論文の概要: On Difficulties of Attention Factorization through Shared Memory
- arxiv url: http://arxiv.org/abs/2404.00798v1
- Date: Sun, 31 Mar 2024 21:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 01:41:21.593583
- Title: On Difficulties of Attention Factorization through Shared Memory
- Title(参考訳): 共有記憶による注意要因化の難しさについて
- Authors: Uladzislau Yorsh, Martin Holeňa, Ondřej Bojar, David Herel,
- Abstract要約: 研究者は現在、Linear Unified Nested Attention(Luna)やMemory Augmented Transformerなどのモデルを調査している。
本研究は,これらのモデルにおける従来の考え方に挑戦し,注意操作を通して直接メモリと対面することが最適であることを明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have revolutionized deep learning in numerous fields, including natural language processing, computer vision, and audio processing. Their strength lies in their attention mechanism, which allows for the discovering of complex input relationships. However, this mechanism's quadratic time and memory complexity pose challenges for larger inputs. Researchers are now investigating models like Linear Unified Nested Attention (Luna) or Memory Augmented Transformer, which leverage external learnable memory to either reduce the attention computation complexity down to linear, or to propagate information between chunks in chunk-wise processing. Our findings challenge the conventional thinking on these models, revealing that interfacing with the memory directly through an attention operation is suboptimal, and that the performance may be considerably improved by filtering the input signal before communicating with memory.
- Abstract(参考訳): トランスフォーマーは、自然言語処理、コンピュータビジョン、オーディオ処理など、多くの分野でディープラーニングに革命をもたらした。
彼らの強みは、複雑な入力関係の発見を可能にする注意機構にある。
しかし、このメカニズムの2次時間とメモリの複雑さは、より大きな入力に挑戦する。
研究者は現在、Linear Unified Nested Attention (Luna)やMemory Augmented Transformerなどのモデルを調査している。これは、外部の学習可能なメモリを活用して、注意計算の複雑さを線形に削減するか、チャンクワイズ処理のチャンク間で情報を伝達する。
本研究は,これらのモデルにおける従来の考え方に挑戦し,注意操作を通して直接メモリと対面することが最適であり,メモリとの通信前に入力信号をフィルタリングすることにより,性能が大幅に向上することを示した。
関連論文リスト
- Learning Linear Attention in Polynomial Time [115.68795790532289]
線形注意を持つ単層変圧器の学習性に関する最初の結果を提供する。
線形アテンションは RKHS で適切に定義された線形予測器とみなすことができる。
我々は,すべての経験的リスクが線形変換器と同等のトレーニングデータセットを効率的に識別する方法を示す。
論文 参考訳(メタデータ) (2024-10-14T02:41:01Z) - RecurFormer: Not All Transformer Heads Need Self-Attention [14.331807060659902]
変換器をベースとした大規模言語モデル(LLM)は複雑な言語パターンをモデル化する上で優れているが、推論時にかなりの計算コストに直面している。
本稿では,リニアリカレントニューラルネットワークに注意を向ける新しいアーキテクチャであるRecurFormerを提案する。
論文 参考訳(メタデータ) (2024-10-10T15:24:12Z) - DAPE V2: Process Attention Score as Feature Map for Length Extrapolation [63.87956583202729]
我々は特徴写像としての注意を概念化し、コンピュータビジョンにおける処理方法を模倣するために畳み込み演算子を適用した。
様々な注意関係のモデルに適応できる新しい洞察は、現在のTransformerアーキテクチャがさらなる進化の可能性があることを示している。
論文 参考訳(メタデータ) (2024-10-07T07:21:49Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Ring Attention with Blockwise Transformers for Near-Infinite Context [88.61687950039662]
本稿では,複数のデバイスにまたがって長いシーケンスを分散するために,ブロックワイドな自己注意とフィードフォワードの計算を利用する,ブロックワイドトランスフォーマーを用いたリングアテンション(リングアテンション)を提案する。
提案手法では,先行メモリ効率の変換器で達成可能なものよりも,デバイス数倍のシーケンスのトレーニングと推論が可能となる。
論文 参考訳(メタデータ) (2023-10-03T08:44:50Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z) - Towards Model-Size Agnostic, Compute-Free, Memorization-based Inference
of Deep Learning [5.41530201129053]
本稿では,新しい暗記ベース推論(MBI)を提案する。
具体的には、リカレント・アテンション・モデル(RAM)の推論機構に着目します。
低次元のスリープ性を活用することで、我々の推論手順は、スリープ位置、パッチベクトルなどからなるキー値対をテーブルに格納する。
計算は、テーブルを利用してキーと値のペアを読み出し、暗記による計算自由推論を実行することにより、推論中に妨げられる。
論文 参考訳(メタデータ) (2023-07-14T21:01:59Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z) - Scaling Transformer to 1M tokens and beyond with RMT [5.60052250541419]
変圧器によって解ける問題の範囲の広い大きな制限は、入力サイズによる計算複雑性の2次スケーリングである。
本研究では,入力コンテキスト長を線形にスケーリングしながら,事前学習したトランスフォーマーモデルの繰り返しメモリ拡張について検討する。
提案手法は,検索精度を高く保ちつつ,前例のない200万トークンのシーケンスの情報をメモリに格納できることを実証する。
論文 参考訳(メタデータ) (2023-04-19T16:18:54Z) - Linear Self-Attention Approximation via Trainable Feedforward Kernel [77.34726150561087]
高速な計算を追求する中で、効率的なトランスフォーマーは印象的な様々なアプローチを実証している。
我々は,トランスフォーマーアーキテクチャの自己保持機構を近似するために,トレーニング可能なカーネルメソッドのアイデアを拡張することを目指している。
論文 参考訳(メタデータ) (2022-11-08T08:14:11Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
本稿では、シーケンスモデリングのための効率的なニューラルネットワークであるMemformerを紹介する。
我々のモデルは長いシーケンスを処理する際に線形時間複雑性と一定メモリ空間複雑性を実現する。
論文 参考訳(メタデータ) (2020-10-14T09:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。