論文の概要: Transfer Learning with Point Transformers
- arxiv url: http://arxiv.org/abs/2404.00846v1
- Date: Mon, 1 Apr 2024 01:23:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 01:31:23.570585
- Title: Transfer Learning with Point Transformers
- Title(参考訳): 点変換器を用いた伝達学習
- Authors: Kartik Gupta, Rahul Vippala, Sahima Srivastava,
- Abstract要約: Point Transformerは、Point Cloudデータの分類、セグメンテーション、検出のための最先端モデルである。
モデルNet10データセットに基づくこれらの注目ネットワークの分類性能について検討し、3次元MNISTデータセットを微調整後に分類するためにトレーニングされたモデルを用いた。
- 参考スコア(独自算出の注目度): 3.678615604632945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point Transformers are near state-of-the-art models for classification, segmentation, and detection tasks on Point Cloud data. They utilize a self attention based mechanism to model large range spatial dependencies between multiple point sets. In this project we explore two things: classification performance of these attention based networks on ModelNet10 dataset and then, we use the trained model to classify 3D MNIST dataset after finetuning. We also train the model from scratch on 3D MNIST dataset to compare the performance of finetuned and from-scratch model on the MNIST dataset. We observe that since the two datasets have a large difference in the degree of the distributions, transfer learned models do not outperform the from-scratch models in this case. Although we do expect transfer learned models to converge faster since they already know the lower level edges, corners, etc features from the ModelNet10 dataset.
- Abstract(参考訳): Point Transformerは、Point Cloudデータ上の分類、セグメンテーション、検出タスクのための最先端モデルに近い。
それらは自己注意に基づくメカニズムを使用して、複数の点集合間の広い範囲の空間的依存関係をモデル化する。
このプロジェクトでは、ModelNet10データセットに基づくこれらの注目ネットワークの分類性能と、微調整後の3D MNISTデータセットの分類にトレーニングモデルを使用する。
また、3D MNISTデータセットのスクラッチからモデルをトレーニングし、MNISTデータセットの微調整モデルとスクラッチモデルのパフォーマンスを比較する。
2つのデータセットは分布の度合いに大きな違いがあるため、転送学習モデルは、この場合のオフ・スクラッチ・モデルよりも優れていない。
移行学習されたモデルは、すでにModelNet10データセットの下位レベルエッジやコーナーなどを知っているので、より早く収束することを期待しています。
関連論文リスト
- CerberusDet: Unified Multi-Task Object Detection [0.0]
CerberusDetは、複数のオブジェクト検出タスクを処理するために設計されたマルチヘッドモデルを持つフレームワークである。
提案されたモデルはYOLOアーキテクチャ上に構築され、バックボーンとネックコンポーネントの両方から視覚的特徴を効率的に共有する。
CerberusDetは、推論時間を36%削減した最先端のデータ固有モデルに匹敵する結果を得た。
論文 参考訳(メタデータ) (2024-07-17T15:00:35Z) - Towards Category Unification of 3D Single Object Tracking on Point
Clouds [11.281200884073812]
カテゴリー特化モデルは、シームズや動き中心のパラダイムに関わらず、3次元単体追跡(SOT)において非常に価値のある手法である。
本稿ではまず,共有モデルパラメータを持つ単一ネットワークを用いて,すべてのカテゴリにまたがるオブジェクトを同時に追跡できる統一モデルを提案する。
論文 参考訳(メタデータ) (2024-01-20T10:38:28Z) - Knowledge is a Region in Weight Space for Fine-tuned Language Models [48.589822853418404]
異なるモデルの重み空間と下層の損失景観が相互に相互に相互に相互に相互に相互に相互に関連しているかを検討する。
同じデータセットで微調整された言語モデルが重み空間で厳密なクラスタを形成し、同じタスクから異なるデータセットで微調整されたモデルがより緩いクラスタを形成することを示す。
論文 参考訳(メタデータ) (2023-02-09T18:59:18Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
階層レベルで機能集約を向上するためのマッピング行列を学習するための注意に基づくモジュールを提案する。
実験の結果,マッピング行列のエンドツーエンドトレーニングにより,様々な3次元形状データセットの最先端結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-05T16:41:00Z) - M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object
Detection with Transformers [78.48081972698888]
M3DeTRは、マルチスケールのフィーチャーピラミッドに基づいて、異なるポイントクラウド表現と異なる機能スケールを組み合わせたものです。
M3DeTRは、複数のポイントクラウド表現、機能スケール、およびトランスを使用してポイントクラウド間の相互関係を同時にモデル化する最初のアプローチです。
論文 参考訳(メタデータ) (2021-04-24T06:48:23Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
本稿では,リッチポイントクラウド表現の導出を目的とした,完全注意モデルであるem Point Transformerを提案する。
モデルの形状分類と検索性能は,大規模都市データセット - RoofN3D と標準ベンチマークデータセット ModelNet40 で評価される。
提案手法は、RoofN3Dデータセットの他の最先端モデルよりも優れており、ModelNet40ベンチマークで競合する結果を与え、目に見えない点の破損に対して高い堅牢性を示す。
論文 参考訳(メタデータ) (2020-11-08T08:11:02Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Neural Data Server: A Large-Scale Search Engine for Transfer Learning
Data [78.74367441804183]
我々は,ターゲットドメインに最も有用な転送学習データを見つけるための大規模検索エンジンであるNeural Data Server (NDS)を紹介した。
NDSは、いくつかの人気のある画像データセットをインデックスするデータサーバで構成され、クライアントにデータを推奨することを目的としている。
我々は,NDSが様々な伝達学習シナリオにおいて有効であることを示し,複数のターゲットデータセットに対して最先端の性能を示す。
論文 参考訳(メタデータ) (2020-01-09T01:21:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。