論文の概要: Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2410.05729v1
- Date: Tue, 8 Oct 2024 06:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 13:19:50.149469
- Title: Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration
- Title(参考訳): Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration
- Authors: Xueyang Kang, Zhaoliang Luan, Kourosh Khoshelham, Bing Wang,
- Abstract要約: 局所球面ユークリッド3次元等分散特性をSE(3)メッセージパッシングに基づく伝搬により埋め込んだグラフニューラルネットワークモデルを提案する。
我々のモデルは、主に記述モジュール、同変グラフ層、類似性、最終的な回帰層から構成される。
3DMatchおよびKITTIデータセットで行った実験は、最先端のアプローチと比較して、我々のモデルの魅力的で堅牢な性能を示している。
- 参考スコア(独自算出の注目度): 2.814748676983944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud registration is a foundational task for 3D alignment and reconstruction applications. While both traditional and learning-based registration approaches have succeeded, leveraging the intrinsic symmetry of point cloud data, including rotation equivariance, has received insufficient attention. This prohibits the model from learning effectively, resulting in a requirement for more training data and increased model complexity. To address these challenges, we propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation. Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers. Such modular design enables us to utilize sparsely sampled input points and initialize the descriptor by self-trained or pre-trained geometric feature descriptors easily. Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches, while the model complexity remains relatively low at the same time.
- Abstract(参考訳): ポイントクラウド登録は、3Dアライメントと再構築のための基礎的なタスクである。
従来型と学習型の両方の登録手法が成功したが、回転同値を含む点雲データの固有対称性を利用するには不十分な注意が払われている。
これにより、モデルは効果的に学習できなくなり、より多くのトレーニングデータが必要となり、モデルの複雑さが増大する。
これらの課題に対処するために,SE(3)メッセージパッシングに基づく伝搬による局所球面ユークリッド3次元等分散特性を組み込んだグラフニューラルネットワークモデルを提案する。
我々のモデルは、主に記述モジュール、同変グラフ層、類似性、最終的な回帰層から構成される。
このようなモジュラー設計により、疎サンプリングされた入力点を利用し、自己学習または事前学習された幾何学的特徴記述子により記述子を初期化することができる。
3DMatchおよびKITTIデータセットで実施された実験は、最先端のアプローチと比較して、我々のモデルの説得力と堅牢性を示す一方、モデルの複雑さは比較的低い。
関連論文リスト
- SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
本稿では,3次元局所特徴の同時学習と重なり推定のための統合鳥眼ビュー(BEV)モデルを提案する。
提案手法は,特に重複の少ないシーンにおいて,重複予測における既存手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-28T12:01:16Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
この研究は、低データ体制のための新しい教師なし事前学習ソリューションを提供する。
近年のPrompting技術の成功に触発されて,QEISモデルを強化した新しい事前学習手法を導入する。
実験結果から,本手法は3つのデータセット上でのいくつかのQEISモデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-02-02T15:49:03Z) - Design equivariant neural networks for 3D point cloud [0.0]
この研究は、既存の3Dポイントクラウドに対するニューラルネットワークの一般化と堅牢性の向上を目指している。
ポイントクラウドの同変モデルを設計する際の大きな課題は、モデルのパフォーマンスと複雑さをトレードオフする方法である。
提案手法は汎用的であり、群同変ニューラルネットワークに対する基本的なアプローチを形成する。
論文 参考訳(メタデータ) (2022-05-02T02:57:13Z) - Focal Sparse Convolutional Networks for 3D Object Detection [121.45950754511021]
我々はスパースCNNの能力を高めるために2つの新しいモジュールを導入する。
焦点スパース・コンボリューション(Focals Conv)であり、焦点スパース・コンボリューションの多様変種である。
スパース・コンボリューションにおける空間的に学習可能な空間空間性は,高度な3次元物体検出に不可欠であることを示す。
論文 参考訳(メタデータ) (2022-04-26T17:34:10Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
複雑なアライメントシーンのための学習に基づくアライメントネットワークを提案する。
我々は,3DMatchデータセットとKITTIオドメトリデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-11-15T08:27:21Z) - Unsupervised Diffeomorphic Surface Registration and Non-Linear Modelling [4.761477900658674]
低次元確率変形モデル(PDM)を内包する3次元曲面の1段階登録モデルを提案する。
変形は、指数層を用いて微分同相に制約される。
1段階の登録モデルは反復的手法に対してベンチマークされ、高いコンパクト性に適合する形状でわずかに低い性能で取引される。
論文 参考訳(メタデータ) (2021-09-28T11:47:12Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Networkは、さまざまな3Dネットワークと統合可能なニューラルネットワークモジュールである。
ARTは入力の形状を学習した標準方向に回転させることを学び、多くのタスクに欠かせない。
さらなる研究のために、コードと事前訓練されたモデルをリリースします。
論文 参考訳(メタデータ) (2021-02-01T20:58:45Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
我々は,KM3D-Netと呼ばれる,RGB画像のみを用いたモノクル3Dオブジェクト検出のための新しいフレームワークを提案する。
我々は、対象のキーポイント、次元、方向を予測するための完全な畳み込みモデルを設計し、これらの推定を視点幾何学的制約と組み合わせて位置属性を計算する。
論文 参考訳(メタデータ) (2020-09-02T00:51:51Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。