Meta Episodic learning with Dynamic Task Sampling for CLIP-based Point Cloud Classification
- URL: http://arxiv.org/abs/2404.00857v1
- Date: Mon, 1 Apr 2024 01:56:27 GMT
- Title: Meta Episodic learning with Dynamic Task Sampling for CLIP-based Point Cloud Classification
- Authors: Shuvozit Ghose, Yang Wang,
- Abstract summary: We propose a novel meta-episodic learning framework for CLIP-based point cloud classification.
We introduce dynamic task sampling within the episode based on performance memory.
Experiments show an average performance gain of 3-6% on ModelNet40 and ScanobjectNN datasets.
- Score: 6.195058023850564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud classification refers to the process of assigning semantic labels or categories to individual points within a point cloud data structure. Recent works have explored the extension of pre-trained CLIP to 3D recognition. In this direction, CLIP-based point cloud models like PointCLIP, CLIP2Point have become state-of-the-art methods in the few-shot setup. Although these methods show promising performance for some classes like airplanes, desks, guitars, etc, the performance for some classes like the cup, flower pot, sink, nightstand, etc is still far from satisfactory. This is due to the fact that the adapter of CLIP-based models is trained using randomly sampled N-way K-shot data in the standard supervised learning setup. In this paper, we propose a novel meta-episodic learning framework for CLIP-based point cloud classification, addressing the challenges of limited training examples and sampling unknown classes. Additionally, we introduce dynamic task sampling within the episode based on performance memory. This sampling strategy effectively addresses the challenge of sampling unknown classes, ensuring that the model learns from a diverse range of classes and promotes the exploration of underrepresented categories. By dynamically updating the performance memory, we adaptively prioritize the sampling of classes based on their performance, enhancing the model's ability to handle challenging and real-world scenarios. Experiments show an average performance gain of 3-6\% on ModelNet40 and ScanobjectNN datasets in a few-shot setup.
Related papers
- Test-Time Adaptation for Point Cloud Upsampling Using Meta-Learning [17.980649681325406]
We propose a test-time adaption approach to enhance model generality of point cloud upsampling.
The proposed approach leverages meta-learning to explicitly learn network parameters for test-time adaption.
Our framework is generic and can be applied in a plug-and-play manner with existing backbone networks in point cloud upsampling.
arXiv Detail & Related papers (2023-08-31T06:44:59Z) - DiffCLIP: Leveraging Stable Diffusion for Language Grounded 3D Classification [19.40810553327253]
This paper proposes DiffCLIP, a new pre-training framework that incorporates stable diffusion with ControlNet to minimize the domain gap in the visual branch.
Experiments on the ModelNet10, ModelNet40, and ScanObjectNN datasets show that DiffCLIP has strong abilities for 3D understanding.
arXiv Detail & Related papers (2023-05-25T11:55:38Z) - FreePoint: Unsupervised Point Cloud Instance Segmentation [72.64540130803687]
We propose FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds.
We represent point features by combining coordinates, colors, and self-supervised deep features.
Based on the point features, we segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model.
arXiv Detail & Related papers (2023-05-11T16:56:26Z) - Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models [64.49254199311137]
We propose a novel Instance-aware Dynamic Prompt Tuning (IDPT) strategy for pre-trained point cloud models.
The essence of IDPT is to develop a dynamic prompt generation module to perceive semantic prior features of each point cloud instance.
In experiments, IDPT outperforms full fine-tuning in most tasks with a mere 7% of the trainable parameters.
arXiv Detail & Related papers (2023-04-14T16:03:09Z) - PointCLIMB: An Exemplar-Free Point Cloud Class Incremental Benchmark [11.992472563628283]
We pioneer to leverage exemplar free class incremental learning on Point Clouds.
We setup a benchmark for 3D Exemplar free class incremental learning.
We investigate performance of various backbones on 3D-Exemplar Free Class Incremental Learning framework.
arXiv Detail & Related papers (2023-04-13T18:47:29Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - PointHop++: A Lightweight Learning Model on Point Sets for 3D
Classification [55.887502438160304]
The PointHop method was recently proposed by Zhang et al. for 3D point cloud classification with unsupervised feature extraction.
We improve the PointHop method furthermore in two aspects: 1) reducing its model complexity in terms of the model parameter number and 2) ordering discriminant features automatically based on the cross-entropy criterion.
With experiments conducted on the ModelNet40 benchmark dataset, we show that the PointHop++ method performs on par with deep neural network (DNN) solutions and surpasses other unsupervised feature extraction methods.
arXiv Detail & Related papers (2020-02-09T04:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.