論文の概要: Instance-Aware Group Quantization for Vision Transformers
- arxiv url: http://arxiv.org/abs/2404.00928v1
- Date: Mon, 1 Apr 2024 05:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 23:16:25.666336
- Title: Instance-Aware Group Quantization for Vision Transformers
- Title(参考訳): 視覚変換器のインスタンス対応グループ量子化
- Authors: Jaehyeon Moon, Dohyung Kim, Junyong Cheon, Bumsub Ham,
- Abstract要約: ポストトレーニング量子化(PTQ)は、事前訓練された完全精度モデルを定量化する効率的なモデル圧縮手法である。
畳み込みニューラルネットワーク(CNN)のPTQ手法は、完全精度のニューラルネットワークに匹敵する量子化結果を提供する。
我々は、VIT(IGQ-ViT)のためのインスタンス対応グループ量子化を導入する。
- 参考スコア(独自算出の注目度): 20.105148326987646
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Post-training quantization (PTQ) is an efficient model compression technique that quantizes a pretrained full-precision model using only a small calibration set of unlabeled samples without retraining. PTQ methods for convolutional neural networks (CNNs) provide quantization results comparable to full-precision counterparts. Directly applying them to vision transformers (ViTs), however, incurs severe performance degradation, mainly due to the differences in architectures between CNNs and ViTs. In particular, the distribution of activations for each channel vary drastically according to input instances, making PTQ methods for CNNs inappropriate for ViTs. To address this, we introduce instance-aware group quantization for ViTs (IGQ-ViT). To this end, we propose to split the channels of activation maps into multiple groups dynamically for each input instance, such that activations within each group share similar statistical properties. We also extend our scheme to quantize softmax attentions across tokens. In addition, the number of groups for each layer is adjusted to minimize the discrepancies between predictions from quantized and full-precision models, under a bit-operation (BOP) constraint. We show extensive experimental results on image classification, object detection, and instance segmentation, with various transformer architectures, demonstrating the effectiveness of our approach.
- Abstract(参考訳): ポストトレーニング量子化(PTQ)は、未ラベル標本の小さな校正セットのみを用いて事前訓練された完全精度モデルを量子化する効率的なモデル圧縮手法である。
畳み込みニューラルネットワーク(CNN)のPTQ手法は、完全精度のニューラルネットワークに匹敵する量子化結果を提供する。
しかし、視覚変換器(ViT)に直接適用すると、主にCNNとViTのアーキテクチャの違いにより、性能が著しく低下する。
特に、チャネルごとのアクティベーションの分布は入力インスタンスによって大きく異なり、CNNのPTQメソッドはViTに不適切である。
これを解決するために、VIT(IGQ-ViT)のインスタンス対応グループ量子化を導入する。
そこで本研究では,各入力インスタンスに対して,アクティベーションマップのチャネルを動的に複数のグループに分割し,グループ内のアクティベーションが同様の統計特性を共有することを提案する。
また、トークン間でソフトマックスの注意を定量化するためのスキームも拡張します。
さらに、ビット演算(BOP)制約の下で、各層に対するグループ数を調整することにより、量子化モデルと完全精度モデルとの差を最小限に抑える。
画像分類,オブジェクト検出,インスタンスセグメンテーションについて,様々なトランスフォーマーアーキテクチャを用いて実験を行い,本手法の有効性を実証した。
関連論文リスト
- AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations [36.63586957377984]
大規模な言語モデルは、しばしばかなりのストレージスペースを必要とする。
パラメータ数が膨大であるため、これらのモデルは大きなストレージスペースを必要とすることが多い。
1つの研究方向は、浮動小数点数の整数置換を用いてモデルを圧縮することを提案する。
論文 参考訳(メタデータ) (2024-10-17T04:35:57Z) - DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers [2.0862654518798034]
本稿では,視覚変換器のための分散親和性・外乱性を考慮したポストトレーニング量子化手法を提案する。
DopQ-ViTは、現在の量子化器の非効率性を分析し、TanQと呼ばれる分布に優しいタン量子化器を導入する。
DopQ-ViTは広範囲に検証され、量子化モデルの性能が大幅に向上した。
論文 参考訳(メタデータ) (2024-08-06T16:40:04Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers [7.155242379236052]
ビジョントランスフォーマー(ViT)の量子化は、これらの課題を緩和するための有望なソリューションとして現れている。
既存の手法は依然として低ビットでの精度の低下に悩まされている。
ADFQ-ViTは、画像分類、オブジェクト検出、および4ビットでのインスタンスセグメンテーションタスクにおいて、様々なベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2024-07-03T02:41:59Z) - MADTP: Multimodal Alignment-Guided Dynamic Token Pruning for
Accelerating Vision-Language Transformer [66.71930982549028]
VLT(Vision-Language Transformer)は近年大きな成功を収めている。
各種VLTの高速化を目的としたマルチモーダルアライメント誘導動的トーケンプルーニング(MADTP)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-05T14:13:50Z) - LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise
Relevance Propagation [0.0]
LRP-QViTは、異なる層に混合精度のビット割り当てを割り当てる説明可能性に基づく手法である。
実験結果から,固定ビット・混合ビット後量子化法が既存の4ビット・6ビット量子化法を超越していることが判明した。
論文 参考訳(メタデータ) (2024-01-20T14:53:19Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
視覚変換器のための新しいPTQフレームワークRepQ-ViTを提案する。
RepQ-ViTは量子化と推論プロセスを分離する。
既存の強力なベースラインを上回り、ViTの4ビットPTQの精度を有効レベルまで向上させることができる。
論文 参考訳(メタデータ) (2022-12-16T02:52:37Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
本稿では,密集自己注意の代替として,コンテンツに基づくスパースアテンション手法を提案する。
具体的には、合計トークン数を減少させるコンテンツベースの方法として、キーとバリュートークンをクラスタ化し、集約する。
結果として得られたクラスタ化されたTokenシーケンスは、元の信号のセマンティックな多様性を保持するが、より少ない計算コストで処理できる。
論文 参考訳(メタデータ) (2022-08-28T04:18:27Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - Feature Transformation Ensemble Model with Batch Spectral Regularization
for Cross-Domain Few-Shot Classification [66.91839845347604]
特徴抽出ネットワークの後に多様な特徴変換を行うことにより,アンサンブル予測モデルを提案する。
我々は,事前学習中に特徴行列の特異値を抑制するために,バッチスペクトル正規化項を用い,モデルの一般化能力を向上させる。
提案したモデルは、ターゲット領域で微調整して、数発の分類に対処することができる。
論文 参考訳(メタデータ) (2020-05-18T05:31:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。