論文の概要: AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations
- arxiv url: http://arxiv.org/abs/2410.13212v1
- Date: Thu, 17 Oct 2024 04:35:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:21:13.033665
- Title: AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations
- Title(参考訳): AsymKV: 層幅非対称量子化構成によるKVキャッシュの1ビット量子化の実現
- Authors: Qian Tao, Wenyuan Yu, Jingren Zhou,
- Abstract要約: 大規模な言語モデルは、しばしばかなりのストレージスペースを必要とする。
パラメータ数が膨大であるため、これらのモデルは大きなストレージスペースを必要とすることが多い。
1つの研究方向は、浮動小数点数の整数置換を用いてモデルを圧縮することを提案する。
- 参考スコア(独自算出の注目度): 36.63586957377984
- License:
- Abstract: Large language models have shown exceptional capabilities in a wide range of tasks, such as text generation and video generation, among others. However, due to their massive parameter count, these models often require substantial storage space, imposing significant constraints on the machines deploying LLMs. To overcome this limitation, one research direction proposes to compress the models using integer replacements for floating-point numbers, in a process known as Quantization. Some recent studies suggest quantizing the key and value cache (KV Cache) of LLMs, and designing quantization techniques that treat the key and value matrices equivalently. This work delves deeper into the asymmetric structural roles of KV Cache, a phenomenon where the transformer's output loss is more sensitive to the quantization of key matrices. We conduct a systematic examination of the attention output error resulting from key and value quantization. The phenomenon inspires us to propose an asymmetric quantization strategy. Our approach allows for 1-bit quantization of the KV cache by implementing distinct configurations for key and value matrices. We carry out experiments across a variety of datasets, demonstrating that our proposed model allows for the quantization of up to 75% decoder layers with 1 bit, while simultaneously maintaining performance levels comparable to those of the models with floating parameters.
- Abstract(参考訳): 大規模言語モデルは、テキスト生成やビデオ生成など、幅広いタスクにおいて例外的な機能を示している。
しかし、パラメータ数が膨大であるため、これらのモデルは、LLMをデプロイするマシンに重大な制約を課すため、かなりのストレージスペースを必要とすることが多い。
この制限を克服するために、ある研究の方向性は、量子化と呼ばれるプロセスにおいて、浮動小数点数の整数置換を用いてモデルを圧縮することを提案する。
最近の研究では、LLMのキーとバリューキャッシュ(KVキャッシュ)の定量化と、キーとバリューを等価に扱う量子化技術の設計が提案されている。
この研究は、変換子の出力損失が鍵行列の量子化により敏感な現象であるKVキャッシュの非対称構造的役割を深く掘り下げる。
キーと値の量子化による注意出力誤差を系統的に調べる。
この現象は、非対称な量子化戦略を提案するきっかけとなった。
提案手法はキー行列と値行列の異なる構成を実装することで,KVキャッシュの1ビット量子化を可能にする。
提案するモデルでは,最大75%のデコーダ層を1ビットで量子化することが可能であり,同時にフローティングパラメータを持つモデルに匹敵する性能レベルを維持可能であることを示す。
関連論文リスト
- Residual vector quantization for KV cache compression in large language model [2.3094645821058735]
KVキャッシュ圧縮法は主にデコード時のメモリ要求を減らすスカラー量子化技術に依存している。
本研究では,大規模言語モデル(LLM)におけるKVキャッシュの圧縮に,高忠実度音声圧縮に広く用いられている残差ベクトル量子化を適用した。
我々は指数移動平均を用いてコードブックを学習し、ベクトル量子化設定に通常使用される入力と出力のプロジェクションを含む他の学習可能なパラメータは存在しない。
論文 参考訳(メタデータ) (2024-10-21T07:20:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Enhancing the performance of Variational Quantum Classifiers with hybrid autoencoders [0.0]
本稿では,特定の量子埋め込みを考慮し,与えられたデータセットの次元性を低減する方法を提案する。
この方法は、VQCを用いた量子機械学習をより汎用的で高次元のデータセットに効果的にすることを目的としている。
論文 参考訳(メタデータ) (2024-09-05T08:51:20Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - RepQuant: Towards Accurate Post-Training Quantization of Large
Transformer Models via Scale Reparameterization [8.827794405944637]
ポストトレーニング量子化(PTQ)は、大きなトランスモデルを圧縮するための有望な解である。
既存のPTQメソッドは、通常、非自明な性能損失を示す。
本稿では、量子化推論デカップリングパラダイムを備えた新しいPTQフレームワークRepQuantを提案する。
論文 参考訳(メタデータ) (2024-02-08T12:35:41Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。