論文の概要: PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.00930v1
- Date: Mon, 1 Apr 2024 05:19:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 23:16:25.660665
- Title: PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models
- Title(参考訳): PSYDIAL:大規模言語モデルを用いたパーソナリティに基づく対話生成
- Authors: Ji-Eun Han, Jun-Seok Koh, Hyeon-Tae Seo, Du-Seong Chang, Kyung-Ah Sohn,
- Abstract要約: 本稿では,大規模言語モデルからの応答をプロンプトによって引き出すための,エンドツーエンドのパーソナリティに基づく合成対話データ生成パイプラインを提案する。
提案したパイプラインを用いて,パーソナリティに基づく対話に焦点を当てた韓国初の対話データセットPSYDIALを紹介した。
実験結果から, 事前学習モデルと, チャイトチャットデータセットを用いた微調整モデルでは, 人格を反映する応答を生成するのに苦労する一方で, PSYDIALでトレーニングしたモデルでは, 大幅な改善が見られた。
- 参考スコア(独自算出の注目度): 4.283022729693451
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a novel end-to-end personality-based synthetic dialogue data generation pipeline, specifically designed to elicit responses from large language models via prompting. We design the prompts to generate more human-like dialogues considering real-world scenarios when users engage with chatbots. We introduce PSYDIAL, the first Korean dialogue dataset focused on personality-based dialogues, curated using our proposed pipeline. Notably, we focus on the Extraversion dimension of the Big Five personality model in our research. Experimental results indicate that while pre-trained models and those fine-tuned with a chit-chat dataset struggle to generate responses reflecting personality, models trained with PSYDIAL show significant improvements. The versatility of our pipeline extends beyond dialogue tasks, offering potential for other non-dialogue related applications. This research opens doors for more nuanced, personality-driven conversational AI in Korean and potentially other languages. Our code is publicly available at https://github.com/jiSilverH/psydial.
- Abstract(参考訳): 本稿では,大規模言語モデルからの応答をプロンプトによって引き出すための,エンドツーエンドのパーソナリティに基づく合成対話データ生成パイプラインを提案する。
チャットボットを利用する場合、現実のシナリオを考慮し、より人間的な対話を生成するためのプロンプトを設計する。
提案したパイプラインを用いて,パーソナリティに基づく対話に焦点を当てた韓国初の対話データセットPSYDIALを紹介した。
特に,本研究では,ビッグファイブ・パーソナリティ・モデルにおける外転次元に着目した。
実験結果から, 事前学習モデルと, チャイトチャットデータセットを用いた微調整モデルでは, 人格を反映する応答を生成するのに苦労する一方で, PSYDIALでトレーニングしたモデルでは, 大幅な改善が見られた。
パイプラインの汎用性は、対話タスクを超えて、他の非対話関連アプリケーションの可能性を提供します。
この研究は、韓国や他の言語で、よりニュアンスで個性中心の会話型AIの扉を開く。
私たちのコードはhttps://github.com/jiSilverH/psydial.comで公開されています。
関連論文リスト
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - PersonalityChat: Conversation Distillation for Personalized Dialog
Modeling with Facts and Traits [5.447308344436046]
PersonalityChatは、人気のPersonaChatデータセットに基づいた合成会話データセットである。
生成対話モデルの特質に基づくパーソナライズには,性格特性ラベルが有効であることを示す。
論文 参考訳(メタデータ) (2024-01-14T20:35:33Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
我々は,対話履歴をより多く処理し,より正確なペルソナ情報を得ることのできる,ユーザ対話履歴を大規模に洗練することを提案する。
具体的には、3つの個人情報精算器とパーソナライズされた応答生成器で構成されるMSPモデルを設計する。
論文 参考訳(メタデータ) (2022-04-18T02:02:56Z) - DLVGen: A Dual Latent Variable Approach to Personalized Dialogue
Generation [28.721411816698563]
本稿では,パーソナライズされた対話を生成するDual Latent Variable Generator (DLVGen)を提案する。
以前の研究とは異なり、DLVGenは潜在的な応答に対する潜伏分布と、エージェントの潜在的なペルソナに対する潜伏分布をモデル化している。
実験の結果,DLVGenはエージェントのペルソナを正確に組み込んだ多様な応答を生成できることがわかった。
論文 参考訳(メタデータ) (2021-11-22T17:21:21Z) - Pchatbot: A Large-Scale Dataset for Personalized Chatbot [49.16746174238548]
本稿では,Weibo と Judicial のフォーラムから収集した2つのサブセットを含む大規模対話データセットである Pchatbot を紹介する。
生データセットを対話システムに適応させるため、匿名化などのプロセスを通じて生データセットを精巧に正規化する。
Pchatbotのスケールは、既存の中国のデータセットよりも大幅に大きく、データ駆動モデルの恩恵を受ける可能性がある。
論文 参考訳(メタデータ) (2020-09-28T12:49:07Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - XPersona: Evaluating Multilingual Personalized Chatbot [76.00426517401894]
我々はペルソナ・チャットの多言語拡張(XPersona)を提案する。
我々のデータセットには、多言語パーソナライズされたエージェントの構築と評価のための英語以外の6言語でのペルソナ会話が含まれています。
論文 参考訳(メタデータ) (2020-03-17T07:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。