論文の概要: PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2404.00979v1
- Date: Mon, 1 Apr 2024 07:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 23:06:39.297554
- Title: PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation
- Title(参考訳): PDF: オープンワールド3Dポイントクラウドセマンティックセマンティックセグメンテーションのための確率駆動フレームワーク
- Authors: Jinfeng Xu, Siyuan Yang, Xianzhi Li, Yuan Tang, Yixue Hao, Long Hu, Min Chen,
- Abstract要約: オープンワールドセマンティックセグメンテーションのための確率駆動フレームワーク(PDF)を提案する。
私たちのフレームワークは、未知の物体を認識して、対応する知識で段階的に学習することのできる、人間のように振る舞うことができる。
- 参考スコア(独自算出の注目度): 20.232832613893784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing point cloud semantic segmentation networks cannot identify unknown classes and update their knowledge, due to a closed-set and static perspective of the real world, which would induce the intelligent agent to make bad decisions. To address this problem, we propose a Probability-Driven Framework (PDF) for open world semantic segmentation that includes (i) a lightweight U-decoder branch to identify unknown classes by estimating the uncertainties, (ii) a flexible pseudo-labeling scheme to supply geometry features along with probability distribution features of unknown classes by generating pseudo labels, and (iii) an incremental knowledge distillation strategy to incorporate novel classes into the existing knowledge base gradually. Our framework enables the model to behave like human beings, which could recognize unknown objects and incrementally learn them with the corresponding knowledge. Experimental results on the S3DIS and ScanNetv2 datasets demonstrate that the proposed PDF outperforms other methods by a large margin in both important tasks of open world semantic segmentation.
- Abstract(参考訳): 既存のポイントクラウドセマンティックセグメンテーションネットワークは、未知のクラスを特定して知識を更新できない。
この問題に対処するため,オープンワールドセマンティックセグメンテーションのための確率駆動フレームワーク(PDF)を提案する。
(i)不確実性を推定して未知のクラスを特定する軽量なUデコーダブランチ。
二 擬似ラベルを生成することにより、未知クラスの確率分布特性とともに幾何学的特徴を供給する柔軟な擬似ラベル方式
三 新たな授業を既存の知識基盤に徐々に組み込むための漸進的な知識蒸留戦略。
私たちのフレームワークは、未知の物体を認識して、対応する知識で段階的に学習することのできる、人間のように振る舞うことができる。
S3DISとScanNetv2データセットの実験結果は、提案されたPDFが、オープンワールドセマンティックセマンティックセグメンテーションの両重要なタスクにおいて、他の手法よりも優れていることを示している。
関連論文リスト
- Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
オープンセット認識(OSR)は、より現実に近い状況に分類タスクを導入することを目的としている。
本研究は,OSRタスクの分類を改善するために,特徴空間の新たな表現を探索するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-05-09T15:15:34Z) - Generalized Label-Efficient 3D Scene Parsing via Hierarchical Feature
Aligned Pre-Training and Region-Aware Fine-tuning [55.517000360348725]
本研究は,ラベル付きシーンが極めて限定された場合の3次元シーン理解のためのフレームワークを提案する。
事前学習された視覚言語モデルから新しいカテゴリーの知識を抽出するために,階層的特徴整合型事前学習と知識蒸留戦略を提案する。
室内と屋外の両方で実験を行ったところ、データ効率のよい学習とオープンワールドの複数ショット学習の両方において、我々のアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-12-01T15:47:04Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
不確実性に基づくアクティブな学習ポリシーは、ポイントクラウドの情報性とボックスレベルのアノテーションコストの間のトレードオフのバランスを取れません。
冗長な3次元境界ボックスラベルの点群を階層的にフィルタリングするtextscCrbを提案する。
実験により,提案手法が既存のアクティブラーニング戦略より優れていることが示された。
論文 参考訳(メタデータ) (2023-01-23T02:43:03Z) - Open Long-Tailed Recognition in a Dynamic World [82.91025831618545]
実世界のデータは、しばしば長い尾を持ち、(目に見えないクラスを持つ)オープンな分布を示す。
現実的な認識システムは、多数派(頭)クラスと少数派(尾)クラスの間でバランスを取り、分布を一般化し、見知らぬクラス(オープンクラス)のインスタンスで新規性を認める必要がある。
我々は,Open Long-Tailed Recognition++を,このような自然分布データからの学習として定義し,バランスの取れたテストセット上での分類精度を最適化する。
論文 参考訳(メタデータ) (2022-08-17T15:22:20Z) - Towards Open Set 3D Learning: A Benchmark on Object Point Clouds [17.145309633743747]
本論文は,オープンセット3次元学習に関する第1報である。
カテゴリのセマンティックシフトの観点から,難易度を増すような新しいテストベッドを導入する。
本稿では,最新のアプローチが3Dデータに有効であるかどうか,その理解のために,アウト・オブ・ディストリビューションとオープン・セット2D文献について検討する。
論文 参考訳(メタデータ) (2022-07-23T17:00:45Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
本稿では,対象物の潜在的可算有界箱の多様性として,ラベルの不確実性問題を定式化する。
本稿では,条件付き変分オートエンコーダを応用した生成フレームワークであるGLENetを提案する。
GLENetが生成するラベルの不確実性はプラグアンドプレイモジュールであり、既存のディープ3D検出器に便利に統合することができる。
論文 参考訳(メタデータ) (2022-07-06T06:26:17Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
我々は3Dポイントクラウドのポイントレベルのセマンティクスをバウンディングボックスレベルの監視で学習するために,Box2Segと呼ばれるニューラルアーキテクチャを導入する。
提案するネットワークは,安価な,あるいは既定のバウンディングボックスレベルのアノテーションやサブクラウドレベルのタグでトレーニング可能であることを示す。
論文 参考訳(メタデータ) (2022-01-09T09:07:48Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
オープンセット認識は、事前に定義されたクラスからサンプルを同時に分類し、残りを「未知」として識別することを目的としている。
本稿では,各既知圏に対応するクラス外空間のポテンシャル表現であるReciprocal Pointを提案する。
相互点によって構成される有界空間に基づいて、未知のリスクは多圏相互作用によって減少する。
論文 参考訳(メタデータ) (2020-10-31T03:20:31Z) - Boosting Deep Open World Recognition by Clustering [37.5993398894786]
我々は、新たな損失定式化により、ディープ・オープンな世界認識アルゴリズムの性能を高める方法を示す。
本研究では,グローバルな1つの閾値を推定するのではなく,クラス固有の拒絶閾値を学習する戦略を提案する。
RGB-D ObjectとCore50の実験は、我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-04-20T12:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。