論文の概要: Efficient Prompting Methods for Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2404.01077v1
- Date: Mon, 1 Apr 2024 12:19:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-03 22:35:23.892193
- Title: Efficient Prompting Methods for Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルの効率的なプロンプト法:調査
- Authors: Kaiyan Chang, Songcheng Xu, Chenglong Wang, Yingfeng Luo, Tong Xiao, Jingbo Zhu,
- Abstract要約: プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
- 参考スコア(独自算出の注目度): 50.171011917404485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks. While this approach opens the door to in-context learning of LLMs, it brings the additional computational burden of model inference and human effort of manual-designed prompts, particularly when using lengthy and complex prompts to guide and control the behavior of LLMs. As a result, the LLM field has seen a remarkable surge in efficient prompting methods. In this paper, we present a comprehensive overview of these methods. At a high level, efficient prompting methods can broadly be categorized into two approaches: prompting with efficient computation and prompting with efficient design. The former involves various ways of compressing prompts, and the latter employs techniques for automatic prompt optimization. We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
- Abstract(参考訳): プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの文脈内学習への扉を開くが、特にLLMの動作をガイドし制御するために長く複雑なプロンプトを使用する場合、モデル推論と手動設計プロンプトの人間の作業による計算負担が増大する。
その結果、LLMフィールドは効率的なプロンプト法が著しく急増した。
本稿では,これらの手法の概要を概観する。
高いレベルでは、効率的なプロンプト法は、効率的な計算のプロンプトと効率的な設計のプロンプトの2つのアプローチに大別することができる。
前者は様々な方法でプロンプトを圧縮し、後者は自動プロンプト最適化のための技術を採用している。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
関連論文リスト
- A Sequential Optimal Learning Approach to Automated Prompt Engineering in Large Language Models [14.483240353801074]
本稿では,自動プロンプトエンジニアリングのための最適学習フレームワークを提案する。
限られた評価予算を効率的に割り当てつつ、効果的なプロンプト機能を逐次識別するように設計されている。
私たちのフレームワークは、より広い範囲のアプリケーションに自動プロンプトエンジニアリングをデプロイするためのソリューションを提供します。
論文 参考訳(メタデータ) (2025-01-07T03:51:10Z) - Generative Prompt Internalization [48.91617280112579]
本稿では,共同学習手法を用いる軽量な手法であるGenerative Prompt Internalization (GenPI)を提案する。
GenPIは、プロンプト入力でモデルの振る舞いを複製するだけでなく、プロンプトの内容も生成する。
エージェントベースのアプリケーションシナリオにおいて,このアプローチが複雑なプロンプトを効果的に内部化することを示す。
論文 参考訳(メタデータ) (2024-11-24T17:32:20Z) - IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
本稿では,シンプルだが解釈可能なプロンプト(IPO)を紹介する。
IPOは大規模言語モデル(LLM)を使用してテキストプロンプトを動的に生成する。
画像記述を生成することで、視覚的内容の条件付けに大型マルチモーダルモデル(LMM)を組み込む。
論文 参考訳(メタデータ) (2024-10-20T14:10:22Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
我々はまず,音声処理分野における音声 LM の促進の可能性を探る。
音声処理タスクを音声単位生成タスクに再構成する。
提案手法は, 強い微調整法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2024-08-23T13:00:10Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching [14.113933201562157]
このデモでは、APE(Active Prompt Engineering)と呼ばれるループ型ツールを紹介します。
APEは人間のフィードバックの最もあいまいな例を反復的に選択します。
論文 参考訳(メタデータ) (2024-07-29T22:22:50Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications [11.568575664316143]
本稿では,応用分野別に分類した,最近のプロンプト工学の進歩について概説する。
本稿では、プロンプト手法、その応用、関連するモデル、利用したデータセットについて詳述する。
この体系的な分析は、この急速に発展している分野をよりよく理解し、オープンな課題と迅速なエンジニアリングの機会を照明することによって将来の研究を促進する。
論文 参考訳(メタデータ) (2024-02-05T19:49:13Z) - Intent-based Prompt Calibration: Enhancing prompt optimization with
synthetic boundary cases [2.6159111710501506]
本稿では,ユーザ意図に対するプロンプトを反復的に洗練するキャリブレーションプロセスを用いて,自動プロンプトエンジニアリングの新しい手法を提案する。
我々は,モデレーションや生成といった現実的なタスクにおいて,強力なプロプライエタリなモデルに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-02-05T15:28:43Z) - MPrompt: Exploring Multi-level Prompt Tuning for Machine Reading
Comprehension [19.12663587559988]
機械読取理解のためのマルチレベルプロンプトチューニング(MPrompt)手法を提案する。
タスク特化、ドメイン特化、コンテキスト特化レベルでのプロンプトを利用して、入力セマンティクスの理解を強化する。
各種QAフォーマットのベンチマーク12件について広範な実験を行い,最先端手法よりも平均1.94%向上した。
論文 参考訳(メタデータ) (2023-10-27T14:24:06Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
強化学習(TEMPERA)を用いたテスト時間プロンプト編集を提案する。
従来のプロンプト生成手法とは対照的に、TEMPERAは事前知識を効率的に活用することができる。
本手法は従来の微調整法と比較して試料効率の平均改善率を5.33倍に向上させる。
論文 参考訳(メタデータ) (2022-11-21T22:38:20Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
最先端のニューラルネットワークモデルは、教師付きトレーニングを必要とせずに、アドホックな言語タスクを解決するために使用することができる。
PromptIDEを使えば、ユーザはプロンプトのバリエーションを試すことができ、プロンプトのパフォーマンスを視覚化し、反復的にプロンプトを最適化できる。
論文 参考訳(メタデータ) (2022-08-16T17:17:53Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - Prompt Programming for Large Language Models: Beyond the Few-Shot
Paradigm [0.0]
自然言語のレンズを通してプロンプトを考えることの有用性を強調しながら,プロンプトプログラミングの手法について論じる。
モデルに種を付けて、さまざまなタスクのための独自の自然言語プロンプトを生成するメタプロンプトのアイデアを紹介します。
論文 参考訳(メタデータ) (2021-02-15T05:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。