論文の概要: Efficient Prompting Methods for Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2404.01077v1
- Date: Mon, 1 Apr 2024 12:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:35:23.892193
- Title: Efficient Prompting Methods for Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルの効率的なプロンプト法:調査
- Authors: Kaiyan Chang, Songcheng Xu, Chenglong Wang, Yingfeng Luo, Tong Xiao, Jingbo Zhu,
- Abstract要約: プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
- 参考スコア(独自算出の注目度): 50.171011917404485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks. While this approach opens the door to in-context learning of LLMs, it brings the additional computational burden of model inference and human effort of manual-designed prompts, particularly when using lengthy and complex prompts to guide and control the behavior of LLMs. As a result, the LLM field has seen a remarkable surge in efficient prompting methods. In this paper, we present a comprehensive overview of these methods. At a high level, efficient prompting methods can broadly be categorized into two approaches: prompting with efficient computation and prompting with efficient design. The former involves various ways of compressing prompts, and the latter employs techniques for automatic prompt optimization. We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
- Abstract(参考訳): プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの文脈内学習への扉を開くが、特にLLMの動作をガイドし制御するために長く複雑なプロンプトを使用する場合、モデル推論と手動設計プロンプトの人間の作業による計算負担が増大する。
その結果、LLMフィールドは効率的なプロンプト法が著しく急増した。
本稿では,これらの手法の概要を概観する。
高いレベルでは、効率的なプロンプト法は、効率的な計算のプロンプトと効率的な設計のプロンプトの2つのアプローチに大別することができる。
前者は様々な方法でプロンプトを圧縮し、後者は自動プロンプト最適化のための技術を採用している。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
関連論文リスト
- IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
本稿では,シンプルだが解釈可能なプロンプト(IPO)を紹介する。
IPOは大規模言語モデル(LLM)を使用してテキストプロンプトを動的に生成する。
画像記述を生成することで、視覚的内容の条件付けに大型マルチモーダルモデル(LMM)を組み込む。
論文 参考訳(メタデータ) (2024-10-20T14:10:22Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching [14.113933201562157]
このデモでは、APE(Active Prompt Engineering)と呼ばれるループ型ツールを紹介します。
APEは人間のフィードバックの最もあいまいな例を反復的に選択します。
論文 参考訳(メタデータ) (2024-07-29T22:22:50Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Intent-based Prompt Calibration: Enhancing prompt optimization with
synthetic boundary cases [2.6159111710501506]
本稿では,ユーザ意図に対するプロンプトを反復的に洗練するキャリブレーションプロセスを用いて,自動プロンプトエンジニアリングの新しい手法を提案する。
我々は,モデレーションや生成といった現実的なタスクにおいて,強力なプロプライエタリなモデルに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-02-05T15:28:43Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
強化学習(TEMPERA)を用いたテスト時間プロンプト編集を提案する。
従来のプロンプト生成手法とは対照的に、TEMPERAは事前知識を効率的に活用することができる。
本手法は従来の微調整法と比較して試料効率の平均改善率を5.33倍に向上させる。
論文 参考訳(メタデータ) (2022-11-21T22:38:20Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。