論文の概要: Stale Diffusion: Hyper-realistic 5D Movie Generation Using Old-school Methods
- arxiv url: http://arxiv.org/abs/2404.01079v1
- Date: Mon, 1 Apr 2024 12:19:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:35:23.885901
- Title: Stale Diffusion: Hyper-realistic 5D Movie Generation Using Old-school Methods
- Title(参考訳): 静的拡散: 旧式手法による超現実的5D映画生成
- Authors: Joao F. Henriques, Dylan Campbell, Tengda Han,
- Abstract要約: 2年前、Stable Diffusionは、超人的な指の数で画像を生成することで、超人的なパフォーマンスを達成した。
本研究では, 安定拡散を最大エントロピー状態で固化・骨化する方法であるステール拡散を提案する。
- 参考スコア(独自算出の注目度): 22.323516185819773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two years ago, Stable Diffusion achieved super-human performance at generating images with super-human numbers of fingers. Following the steady decline of its technical novelty, we propose Stale Diffusion, a method that solidifies and ossifies Stable Diffusion in a maximum-entropy state. Stable Diffusion works analogously to a barn (the Stable) from which an infinite set of horses have escaped (the Diffusion). As the horses have long left the barn, our proposal may be seen as antiquated and irrelevant. Nevertheless, we vigorously defend our claim of novelty by identifying as early adopters of the Slow Science Movement, which will produce extremely important pearls of wisdom in the future. Our speed of contributions can also be seen as a quasi-static implementation of the recent call to pause AI experiments, which we wholeheartedly support. As a result of a careful archaeological expedition to 18-months-old Git commit histories, we found that naturally-accumulating errors have produced a novel entropy-maximising Stale Diffusion method, that can produce sleep-inducing hyper-realistic 5D video that is as good as one's imagination.
- Abstract(参考訳): 2年前、Stable Diffusionは、超人的な指数で画像を生成することで、超人的なパフォーマンスを達成した。
技術的新奇性の着実に低下した後, 安定拡散を最大エントロピー状態で固形化し, 浸透させる手法であるステール拡散を提案する。
安定拡散(stable Diffusion)は、無限の馬が逃げ出した納屋(stable)と類似して機能する(拡散)。
馬は長い間納屋を離れてきたので、我々の提案は時代遅れで無関係であると見なされるかもしれない。
それにもかかわらず、我々は、未来において非常に重要な知恵の真珠を産み出すスローサイエンス運動のアーリーアダプターとして特定することで、ノベルティの主張を積極的に擁護する。
コントリビューションのスピードは、最近のAI実験を一時停止するための準静的な実装と見なすこともできる。
その結果,18ヶ月のGitコミット履歴を慎重に調査した結果,自然に蓄積したエラーが,睡眠を誘発する超現実的な5Dビデオを生成する,エントロピーを最大化する新たなスタイル拡散法を生み出していることが判明した。
関連論文リスト
- Constrained Diffusion with Trust Sampling [11.354281911272864]
我々は、最適化の観点から、トレーニングなし損失誘導拡散を再考する。
トラストサンプリングは、無条件拡散モデルに従って効果的にバランスをとり、損失誘導に固執する。
複雑なタスクや画像の領域や3Dモーション生成の領域で広範囲にわたる実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-11-17T01:34:57Z) - RecMoDiffuse: Recurrent Flow Diffusion for Human Motion Generation [5.535590461577558]
RecMoDiffuseは時間モデリングのための新しい再帰拡散定式化である。
人間の動作の時間的モデリングにおけるRecMoDiffuseの有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T11:25:37Z) - Text Diffusion with Reinforced Conditioning [92.17397504834825]
本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
そこで本研究では, TRECと呼ばれる新しいテキスト拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T09:24:02Z) - Diffusion Sampling with Momentum for Mitigating Divergence Artifacts [10.181486597424486]
本研究では, 分散アーティファクトの潜在的な原因について検討し, 数値的手法の小さな安定性領域が主な原因である可能性が示唆された。
第1のテクニックは、最適化を改善するためのよく知られたテクニックであるヘビーボール運動量(HB)を、既存の拡散数値法に組み入れて安定性領域を広げることである。
第2のテクニックは、GHVB(Generalized Heavy Ball)と呼ばれ、精度とアーティファクトの抑制のトレードオフを提供する新しい高階法を構築する。
論文 参考訳(メタデータ) (2023-07-20T14:37:30Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - DiffDreamer: Towards Consistent Unsupervised Single-view Scene
Extrapolation with Conditional Diffusion Models [91.94566873400277]
DiffDreamerは、長いカメラ軌跡を描いた新しいビューを合成できる教師なしのフレームワークである。
画像条件付き拡散モデルでは, 従来のGAN法よりも一貫性を保ちながら, 長距離シーン外挿を効果的に行うことができることを示す。
論文 参考訳(メタデータ) (2022-11-22T10:06:29Z) - Human Joint Kinematics Diffusion-Refinement for Stochastic Motion
Prediction [22.354538952573158]
MotionDiffは、人間の関節のキネマティクスを加熱粒子として扱う拡散確率モデルである。
MotionDiffは、多種多様な可塑性運動を生成する空間時間変換器ベースの拡散ネットワークと、出力をさらに洗練するためのグラフ畳み込みネットワークの2つの部分で構成されている。
論文 参考訳(メタデータ) (2022-10-12T07:38:33Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
ビデオベースの人間のモーション転送は、ソースモーションに従って人間のビデオアニメーションを作成します。
自然なポーズ依存非剛性変形を伴う高忠実で時間的に一貫性のある人の動き伝達を行う新しい枠組みを提案する。
実験結果では,映像リアリズムの点で最先端を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-20T16:54:38Z) - Infinite Nature: Perpetual View Generation of Natural Scenes from a
Single Image [73.56631858393148]
本研究では,1枚の画像から任意に長いカメラの軌跡に対応する新規ビューの長期生成という,永続的なビュー生成の問題について紹介する。
我々は、幾何合成と画像合成の両方を反復レンダリング、洗練、反復フレームワークで統合するハイブリッドアプローチを採用する。
提案手法は,手動のアノテーションを使わずに,一眼レフビデオシーケンスの集合から訓練することができる。
論文 参考訳(メタデータ) (2020-12-17T18:59:57Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
我々は、長期的な予測、つまり、人間の動きの長いシーケンスを生成することに焦点を当てる。
本研究では,非決定論的,テキストに変化する,永続的な人間の動きを生成するモデルを提案する。
我々は、これをホワイトノイズガウス過程のKL分岐の重み付き関数を用いて訓練し、潜時シーケンスの時間依存性を許容する。
論文 参考訳(メタデータ) (2020-07-27T21:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。