論文の概要: The Rate-Distortion-Perception Trade-off: The Role of Private Randomness
- arxiv url: http://arxiv.org/abs/2404.01111v1
- Date: Mon, 1 Apr 2024 13:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:25:32.492584
- Title: The Rate-Distortion-Perception Trade-off: The Role of Private Randomness
- Title(参考訳): レート・歪み・知覚トレードオフ--私的ランダム性の役割
- Authors: Yassine Hamdi, Aaron B. Wagner, Deniz Gündüz,
- Abstract要約: 圧縮速度がソースのエントロピーよりも低い場合、プライベートなランダム性は役に立たないことを示す。
圧縮速度がソースのエントロピーよりも低い場合, プライベートなランダム性が有用でないことを示す。
- 参考スコア(独自算出の注目度): 53.81648040452621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In image compression, with recent advances in generative modeling, the existence of a trade-off between the rate and the perceptual quality (realism) has been brought to light, where the realism is measured by the closeness of the output distribution to the source. It has been shown that randomized codes can be strictly better under a number of formulations. In particular, the role of common randomness has been well studied. We elucidate the role of private randomness in the compression of a memoryless source $X^n=(X_1,...,X_n)$ under two kinds of realism constraints. The near-perfect realism constraint requires the joint distribution of output symbols $(Y_1,...,Y_n)$ to be arbitrarily close the distribution of the source in total variation distance (TVD). The per-symbol near-perfect realism constraint requires that the TVD between the distribution of output symbol $Y_t$ and the source distribution be arbitrarily small, uniformly in the index $t.$ We characterize the corresponding asymptotic rate-distortion trade-off and show that encoder private randomness is not useful if the compression rate is lower than the entropy of the source, however limited the resources in terms of common randomness and decoder private randomness may be.
- Abstract(参考訳): 画像圧縮において、生成モデリングの最近の進歩とともに、その速度と知覚的品質(リアリズム)のトレードオフの存在が明るみに出され、そこでは、音源への出力分布の密接さによって現実性を測定する。
乱数化符号は、多くの定式化の下で厳密に優れていることが示されている。
特に、共通ランダム性の役割はよく研究されている。
メモリレスソース$X^n=(X_1,...,X_n)$の圧縮におけるプライベートランダム性の役割を、2種類のリアリズム制約の下で解明する。
ほぼ完全なリアリズム制約は、出力シンボルの合同分布$(Y_1,...,Y_n)$を、全変動距離(TVD)でソースの分布を任意に閉ざす必要がある。
シンボルごとのニアパーフェクトリアリズム制約は、出力シンボル$Y_t$の分布とソース分布の間のTVDを、インデックス$tで任意に小さくすることを要求する。
圧縮速度がソースのエントロピーよりも低い場合、エンコーダのプライベートランダム性は役に立たないが、共通ランダム性やデコーダのプライベートランダム性の観点からはリソースに制限がある。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Rate-Distortion-Perception Tradeoff Based on the
Conditional-Distribution Perception Measure [33.084834042565895]
本研究では,大きなブロック長の制限下で,メモリレスソースモデルに対するRDPのトレードオフについて検討する。
我々の知覚尺度は、エンコーダ出力に条件付されたソースの分布と再構成シーケンスのばらつきに基づく。
論文 参考訳(メタデータ) (2024-01-22T18:49:56Z) - New Classes of the Greedy-Applicable Arm Feature Distributions in the Sparse Linear Bandit Problem [34.51168440208439]
スパースパラメータの内積を通じて腕の特徴が報酬に影響を及ぼすスパースコンテキストバンドイット問題を考える。
近年の研究では、グリーディアーム選択ポリシーに基づくスパーシリティ非依存アルゴリズムが開発されている。
論文 参考訳(メタデータ) (2023-12-19T18:35:33Z) - A Pseudo-Semantic Loss for Autoregressive Models with Logical
Constraints [87.08677547257733]
ニューロシンボリックAIは、純粋にシンボリックな学習とニューラルな学習のギャップを埋める。
本稿では,ニューラルネットワークの出力分布に対するシンボリック制約の可能性を最大化する方法を示す。
また,スドクと最短経路予測の手法を自己回帰世代として評価した。
論文 参考訳(メタデータ) (2023-12-06T20:58:07Z) - Policy Evaluation in Distributional LQR [70.63903506291383]
ランダムリターンの分布を閉形式で表現する。
この分布は有限個の確率変数で近似できることを示す。
近似回帰分布を用いて,リスク・アバースLQRに対するゼロ階ポリシー勾配アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-23T20:27:40Z) - Constrained Pure Exploration Multi-Armed Bandits with a Fixed Budget [4.226118870861363]
固定予算の下で、制約のある純粋な探索、多武装バンディットの定式化を検討する。
本稿では,Successive Rejects フレームワークに基づく textscConstrained-SR というアルゴリズムを提案する。
また, ある特別な場合において, 関連する崩壊速度は情報理論的下界に対してほぼ最適であることを示した。
論文 参考訳(メタデータ) (2022-11-27T08:58:16Z) - The Rate-Distortion-Perception Tradeoff: The Role of Common Randomness [23.37690979017006]
本稿では,分散保存型損失圧縮問題と一致する完全現実論の事例に焦点を当てる。
既存のトレードオフは、共通ランダム性の量を無限にすることで回復される。
論文 参考訳(メタデータ) (2022-02-08T21:14:57Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Evidential Softmax for Sparse Multimodal Distributions in Deep
Generative Models [38.26333732364642]
確率分布の多重性を保存するスパース正規化関数である$textitev-softmax$を提案する。
本稿では,多変量オートエンコーダや自動回帰アーキテクチャなど,多種多様な生成モデルについて評価する。
論文 参考訳(メタデータ) (2021-10-27T05:32:25Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。