Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features
- URL: http://arxiv.org/abs/2404.01112v4
- Date: Wed, 24 Apr 2024 03:14:59 GMT
- Title: Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features
- Authors: Pietro Bonazzi, Marie-Julie Rakatosaona, Marco Cannici, Federico Tombari, Davide Scaramuzza,
- Abstract summary: We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering.
To improve reconstruction in constraint settings, we regularize the training of a differentiable with hybrid surface and appearance.
We demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision.
- Score: 52.62053703535824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing deep learning methods for the reconstruction and denoising of point clouds rely on small datasets of 3D shapes. We circumvent the problem by leveraging deep learning methods trained on billions of images. We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering by exploiting prior knowledge distilled from image-based deep learning models. To improve reconstruction in constraint settings, we regularize the training of a differentiable renderer with hybrid surface and appearance by introducing semantic consistency supervision. In addition, we propose a pipeline to finetune Stable Diffusion to denoise renderings of noisy point clouds and we demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision. We compare our method with DSS and PointRadiance and achieved higher quality 3D reconstruction on the Sketchfab Testset and SCUT Dataset.
Related papers
- GS-PT: Exploiting 3D Gaussian Splatting for Comprehensive Point Cloud Understanding via Self-supervised Learning [15.559369116540097]
Self-supervised learning of point cloud aims to leverage unlabeled 3D data to learn meaningful representations without reliance on manual annotations.
We propose GS-PT, which integrates 3D Gaussian Splatting (3DGS) into point cloud self-supervised learning for the first time.
Our pipeline utilizes transformers as the backbone for self-supervised pre-training and introduces novel contrastive learning tasks through 3DGS.
arXiv Detail & Related papers (2024-09-08T03:46:47Z) - Fast Learning of Signed Distance Functions from Noisy Point Clouds via Noise to Noise Mapping [54.38209327518066]
Learning signed distance functions from point clouds is an important task in 3D computer vision.
We propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision.
Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy observations.
arXiv Detail & Related papers (2024-07-04T03:35:02Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - DiffPoint: Single and Multi-view Point Cloud Reconstruction with ViT
Based Diffusion Model [10.253402444122084]
We propose a neat and powerful architecture called DiffPoint that combines ViT and diffusion models for the task of point cloud reconstruction.
We evaluate DiffPoint on both single-view and multi-view reconstruction tasks and achieve state-of-the-art results.
arXiv Detail & Related papers (2024-02-17T10:18:40Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
Data augmentation is a powerful technique to enhance the performance of a deep learning task.
This work explores test-time augmentation (TTA) for 3D point clouds.
arXiv Detail & Related papers (2023-11-22T04:31:09Z) - Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise
to Noise Mapping [52.25114448281418]
Learning signed distance functions (SDFs) from 3D point clouds is an important task in 3D computer vision.
We propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision for training.
Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations.
arXiv Detail & Related papers (2023-06-02T09:52:04Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - Flow-based GAN for 3D Point Cloud Generation from a Single Image [16.04710129379503]
We introduce a hybrid explicit-implicit generative modeling scheme, which inherits the flow-based explicit generative models for sampling point clouds with arbitrary resolutions.
We evaluate on the large-scale synthetic dataset ShapeNet, with the experimental results demonstrating the superior performance of the proposed method.
arXiv Detail & Related papers (2022-10-08T17:58:20Z) - Learning A Locally Unified 3D Point Cloud for View Synthesis [45.757280092357355]
We propose a new deep learning-based view synthesis paradigm that learns a locally unified 3D point cloud from source views.
Experimental results on three benchmark datasets demonstrate that our method can improve the average PSNR by more than 4 dB.
arXiv Detail & Related papers (2022-09-12T04:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.