Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution
- URL: http://arxiv.org/abs/2404.01122v1
- Date: Mon, 1 Apr 2024 13:56:12 GMT
- Title: Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution
- Authors: Ajay Devda, Akshay Sunil, Murthy R, B Deepthi,
- Abstract summary: This study introduces deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale.
To test this hypothesis, we introduce a physics informed ConvLSTM2D model to predict precipitation 6hr and 12hr ahead for Mumbai, India.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting rainfall in tropical areas is challenging due to complex atmospheric behaviour, elevated humidity levels, and the common presence of convective rain events. In the Indian context, the difficulty is further exacerbated because of the monsoon intra seasonal oscillations, which introduce significant variability in rainfall patterns over short periods. Earlier investigations into rainfall prediction leveraged numerical weather prediction methods, along with statistical and deep learning approaches. This study introduces deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale. In this study, we hypothesize that integrating physical understanding improves the precipitation prediction skill of deep learning models with high precision for finer spatial scales, such as cities. To test this hypothesis, we introduce a physics informed ConvLSTM2D model to predict precipitation 6hr and 12hr ahead for Mumbai, India. We utilize ERA5 reanalysis data select predictor variables, across various geopotential levels. The ConvLSTM2D model was trained on the target variable precipitation for 4 different grids representing different spatial grid locations of Mumbai. Thus, the use of the ConvLSTM2D model for rainfall prediction, utilizing physics informed data from specific grids with limited spatial information, reflects current advancements in meteorological research that emphasize both efficiency and localized precision.
Related papers
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change.
We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational models.
arXiv Detail & Related papers (2024-10-11T09:09:07Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Unleashing the Power of Dynamic Mode Decomposition and Deep Learning for
Rainfall Prediction in North-East India [0.27488316163114823]
This study investigates the use of two data-driven methods, Dynamic Mode Decomposition (DMD) and Long Short-Term Memory (LSTM) for rainfall forecasting.
We trained and validated our models to forecast future rainfall patterns using historical rainfall data from multiple weather stations.
Our findings suggest that data-driven methods can significantly improve rainfall forecasting accuracy in the North-East region of India.
arXiv Detail & Related papers (2023-09-17T17:58:06Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Short-range forecasts of global precipitation using deep
learning-augmented numerical weather prediction [0.11726720776908518]
We augment the output of the well-known NWP model with deep learning to create a hybrid model that improves short-range global precipitation 1-, 2-, and 3-day lead times.
To hybridise, we address the temporality of the global data by using modified DLWP-CS architecture which transforms all the fields to cubed-sphere projection.
Deep learning enhanced CFSv2 reduces mean bias by 8x over important land for 1 day lead compared to CFSv2.
arXiv Detail & Related papers (2022-06-23T12:49:36Z) - Prediction of Rainfall in Rajasthan, India using Deep and Wide Neural
Network [0.5735035463793008]
We propose a deep and wide rainfall prediction model (DWRPM) to predict rainfall in Indian state of Rajasthan.
Information of geographical parameters (latitude and longitude) are included in a unique way.
We compare our results with various deep-learning approaches like LSTM and CNN, which are observed to work well in sequence-based predictions.
arXiv Detail & Related papers (2020-10-22T15:01:22Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.