Prediction of Rainfall in Rajasthan, India using Deep and Wide Neural
Network
- URL: http://arxiv.org/abs/2010.11787v1
- Date: Thu, 22 Oct 2020 15:01:22 GMT
- Title: Prediction of Rainfall in Rajasthan, India using Deep and Wide Neural
Network
- Authors: Vikas Bajpai, Anukriti Bansal, Kshitiz Verma, Sanjay Agarwal
- Abstract summary: We propose a deep and wide rainfall prediction model (DWRPM) to predict rainfall in Indian state of Rajasthan.
Information of geographical parameters (latitude and longitude) are included in a unique way.
We compare our results with various deep-learning approaches like LSTM and CNN, which are observed to work well in sequence-based predictions.
- Score: 0.5735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rainfall is a natural process which is of utmost importance in various areas
including water cycle, ground water recharging, disaster management and
economic cycle. Accurate prediction of rainfall intensity is a challenging task
and its exact prediction helps in every aspect. In this paper, we propose a
deep and wide rainfall prediction model (DWRPM) and evaluate its effectiveness
to predict rainfall in Indian state of Rajasthan using historical time-series
data. For wide network, instead of using rainfall intensity values directly, we
are using features obtained after applying a convolutional layer. For deep
part, a multi-layer perceptron (MLP) is used. Information of geographical
parameters (latitude and longitude) are included in a unique way. It gives the
model a generalization ability, which helps a single model to make rainfall
predictions in different geographical conditions. We compare our results with
various deep-learning approaches like MLP, LSTM and CNN, which are observed to
work well in sequence-based predictions. Experimental analysis and comparison
shows the applicability of our proposed method for rainfall prediction in
Rajasthan.
Related papers
- Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
This study introduces deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale.
To test this hypothesis, we introduce a physics informed ConvLSTM2D model to predict precipitation 6hr and 12hr ahead for Mumbai, India.
arXiv Detail & Related papers (2024-04-01T13:56:12Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
arXiv Detail & Related papers (2024-03-15T03:27:39Z) - Unleashing the Power of Dynamic Mode Decomposition and Deep Learning for
Rainfall Prediction in North-East India [0.27488316163114823]
This study investigates the use of two data-driven methods, Dynamic Mode Decomposition (DMD) and Long Short-Term Memory (LSTM) for rainfall forecasting.
We trained and validated our models to forecast future rainfall patterns using historical rainfall data from multiple weather stations.
Our findings suggest that data-driven methods can significantly improve rainfall forecasting accuracy in the North-East region of India.
arXiv Detail & Related papers (2023-09-17T17:58:06Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Experimental study of time series forecasting methods for groundwater
level prediction [0.0]
We created a dataset of 1026 groundwater level time series.
Each time series is made of daily measurements of groundwater levels and two variables, rainfall and evapotranspiration.
We compared different predictors including local and global time series forecasting methods.
Our result analysis shows that the best predictions are obtained by training a global method on past groundwater levels and rainfall data.
arXiv Detail & Related papers (2022-09-28T08:58:55Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - A Deep and Wide Neural Network-based Model for Rajasthan Summer Monsoon
Rainfall (RSMR) Prediction [0.0]
We analyze and evaluate various deep learning approaches for prediction of summer monsoon rainfall in Indian state of Rajasthan.
From IMD grided dataset, rainfall data of 484 coordinates are selected which lies within the geographical boundaries of Rajasthan.
We have also collected rainfall data of 158 rain gauge station from water resources department.
arXiv Detail & Related papers (2021-03-03T03:42:45Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.