Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations
- URL: http://arxiv.org/abs/2404.01145v1
- Date: Mon, 1 Apr 2024 14:45:16 GMT
- Title: Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations
- Authors: Huan Zhang, Yifan Chen, Eric Vanden-Eijnden, Benjamin Peherstorfer,
- Abstract summary: This work shows that sequential-in-time training methods can be understood broadly as either optimize-then-discretize (OtD) or discretize-then-optimize (DtO) schemes.
- Score: 21.992668884092055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential-in-time methods solve a sequence of training problems to fit nonlinear parametrizations such as neural networks to approximate solution trajectories of partial differential equations over time. This work shows that sequential-in-time training methods can be understood broadly as either optimize-then-discretize (OtD) or discretize-then-optimize (DtO) schemes, which are well known concepts in numerical analysis. The unifying perspective leads to novel stability and a posteriori error analysis results that provide insights into theoretical and numerical aspects that are inherent to either OtD or DtO schemes such as the tangent space collapse phenomenon, which is a form of over-fitting. Additionally, the unified perspective facilitates establishing connections between variants of sequential-in-time training methods, which is demonstrated by identifying natural gradient descent methods on energy functionals as OtD schemes applied to the corresponding gradient flows.
Related papers
- From continuous-time formulations to discretization schemes: tensor
trains and robust regression for BSDEs and parabolic PDEs [3.785123406103385]
We argue that tensor trains provide an appealing framework for parabolic PDEs.
We develop iterative schemes, which differ in terms of computational efficiency and robustness.
We demonstrate both theoretically and numerically that our methods can achieve a favorable trade-off between accuracy and computational efficiency.
arXiv Detail & Related papers (2023-07-28T11:44:06Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Robust SDE-Based Variational Formulations for Solving Linear PDEs via
Deep Learning [6.1678491628787455]
Combination of Monte Carlo methods and deep learning has led to efficient algorithms for solving partial differential equations (PDEs) in high dimensions.
Related learning problems are often stated as variational formulations based on associated differential equations (SDEs)
It is therefore crucial to rely on adequate gradient estimators that exhibit low variance in order to reach convergence accurately and swiftly.
arXiv Detail & Related papers (2022-06-21T17:59:39Z) - Probabilistic Numerical Method of Lines for Time-Dependent Partial
Differential Equations [20.86460521113266]
Current state-of-the-art PDE solvers treat the space- and time-dimensions separately, serially, and with black-box algorithms.
We introduce a probabilistic version of a technique called method of lines to fix this issue.
Joint quantification of space- and time-uncertainty becomes possible without losing the performance benefits of well-tuned ODE solvers.
arXiv Detail & Related papers (2021-10-22T15:26:05Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
We present a new approach to using neural networks to approximate the solutions of variational equations.
We use a sequence of finite-dimensional subspaces whose basis functions are realizations of a sequence of neural networks.
arXiv Detail & Related papers (2021-05-28T20:25:40Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
The article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms.
It provides a characterization of algorithms that exhibit accelerated convergence.
arXiv Detail & Related papers (2020-02-28T00:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.