Probabilistic Numerical Method of Lines for Time-Dependent Partial
Differential Equations
- URL: http://arxiv.org/abs/2110.11847v1
- Date: Fri, 22 Oct 2021 15:26:05 GMT
- Title: Probabilistic Numerical Method of Lines for Time-Dependent Partial
Differential Equations
- Authors: Nicholas Kr\"amer, Jonathan Schmidt, and Philipp Hennig
- Abstract summary: Current state-of-the-art PDE solvers treat the space- and time-dimensions separately, serially, and with black-box algorithms.
We introduce a probabilistic version of a technique called method of lines to fix this issue.
Joint quantification of space- and time-uncertainty becomes possible without losing the performance benefits of well-tuned ODE solvers.
- Score: 20.86460521113266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work develops a class of probabilistic algorithms for the numerical
solution of nonlinear, time-dependent partial differential equations (PDEs).
Current state-of-the-art PDE solvers treat the space- and time-dimensions
separately, serially, and with black-box algorithms, which obscures the
interactions between spatial and temporal approximation errors and misguides
the quantification of the overall error. To fix this issue, we introduce a
probabilistic version of a technique called method of lines. The proposed
algorithm begins with a Gaussian process interpretation of finite difference
methods, which then interacts naturally with filtering-based probabilistic
ordinary differential equation (ODE) solvers because they share a common
language: Bayesian inference. Joint quantification of space- and
time-uncertainty becomes possible without losing the performance benefits of
well-tuned ODE solvers. Thereby, we extend the toolbox of probabilistic
programs for differential equation simulation to PDEs.
Related papers
- Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations [21.992668884092055]
This work shows that sequential-in-time training methods can be understood broadly as either optimize-then-discretize (OtD) or discretize-then-optimize (DtO) schemes.
arXiv Detail & Related papers (2024-04-01T14:45:16Z) - Parallel-in-Time Probabilistic Numerical ODE Solvers [35.716255949521305]
Probabilistic numerical solvers for ordinary differential equations (ODEs) treat the numerical simulation of dynamical systems as problems of Bayesian state estimation.
We build on the time-parallel formulation of iterated extended Kalman smoothers to formulate a parallel-in-time probabilistic numerical ODE solver.
arXiv Detail & Related papers (2023-10-02T12:32:21Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Self-Consistent Velocity Matching of Probability Flows [22.2542921090435]
We present a discretization-free scalable framework for solving a class of partial differential equations (PDEs)
The main observation is that the time-varying velocity field of the PDE solution needs to be self-consistent.
We use an iterative formulation with a biased gradient estimator that bypasses significant computational obstacles with strong empirical performance.
arXiv Detail & Related papers (2023-01-31T16:17:18Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.