Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models
- URL: http://arxiv.org/abs/2404.01160v1
- Date: Mon, 1 Apr 2024 15:06:20 GMT
- Title: Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models
- Authors: Amir Faghihi, Mohammadreza Fathollahi, Roozbeh Rajabi,
- Abstract summary: Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
- Score: 0.6827423171182154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, skin cancer is considered as one of the most dangerous and common cancers in the world which demands special attention. Skin cancer may be developed in different types; including melanoma, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma. Among them, melanoma is more unpredictable. Melanoma cancer can be diagnosed at early stages increasing the possibility of disease treatment. Automatic classification of skin lesions is a challenging task due to diverse forms and grades of the disease, demanding the requirement of novel methods implementation. Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification. In this article, we inspect skin lesion classification problem using CNN techniques. Remarkably, we present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework on pre-trained neural networks, without any requirement for data enlargement procedures i.e. merging VGG16 and VGG19 architectures pre-trained by a generic dataset with modified AlexNet network, and then, fine-tuned by a subject-specific dataset containing dermatology images. The convolution neural network was trained using 2541 images and, in particular, dropout was used to prevent the network from overfitting. Finally, the validity of the model was checked by applying the K-fold cross validation method. The proposed model increased classification accuracy by 3% (from 94.2% to 98.18%) in comparison with other methods.
Related papers
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
This study focuses on osteosarcoma (OS), the most common bone cancer in children and adolescents, which affects the long bones of the arms and legs.
We propose a novel hybrid model that combines convolutional neural networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy for OS.
The model achieved an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score of 99.23%.
arXiv Detail & Related papers (2024-10-29T13:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - A Comparative Analysis Towards Melanoma Classification Using Transfer
Learning by Analyzing Dermoscopic Images [0.0]
This paper presents a system that combines deep learning techniques with established transfer learning methods to enable skin lesions classification and diagnosis of melanoma skin lesions.
Researchers used 'Deep Learning' techniques to train an expansive number of photos & essentially to get the expected result.
DenseNet performed better than the others which gives a validation accuracy of 96.64%, validation loss of 9.43% & test set accuracy of 99.63%.
arXiv Detail & Related papers (2023-12-02T19:46:48Z) - Multi-class Skin Cancer Classification Architecture Based on Deep
Convolutional Neural Network [2.4469484645516837]
This paper proposes a computer-based deep learning approach that will accurately identify different kinds of skin lesions.
Deep learning approaches can detect skin cancer very accurately since the models learn each pixel of an image.
Some deep learning models have limitations, leading the model to a false-positive result.
arXiv Detail & Related papers (2023-03-13T23:16:18Z) - Classification of Skin Cancer Images using Convolutional Neural Networks [0.0]
Skin cancer is the most common human malignancy.
Deep neural networks show humongous potential for image classification.
Highest model accuracy achieved was over 86.65%.
arXiv Detail & Related papers (2022-02-01T17:11:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - A Smartphone based Application for Skin Cancer Classification Using Deep
Learning with Clinical Images and Lesion Information [1.8199326045904993]
Deep neural networks (DNNs) have become viable to deal with skin cancer detection.
In this work, we present a smartphone-based application to assist on skin cancer detection.
arXiv Detail & Related papers (2021-04-28T16:51:00Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.