論文の概要: MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space
- arxiv url: http://arxiv.org/abs/2404.01296v1
- Date: Mon, 1 Apr 2024 17:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:16:45.279950
- Title: MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space
- Title(参考訳): MagicMirror: 制限付き検索スペースを備えた高速かつ高品質なアバター生成
- Authors: Armand Comas-Massagué, Di Qiu, Menglei Chai, Marcel Bühler, Amit Raj, Ruiqi Gao, Qiangeng Xu, Mark Matthews, Paulo Gotardo, Octavia Camps, Sergio Orts-Escolano, Thabo Beeler,
- Abstract要約: テキストプロンプトを利用した3次元アバター生成とパーソナライズのための新しいフレームワークを提案する。
主要なイノベーションは、フォトリアリスティックなアバター合成の課題を克服することを目的としている。
- 参考スコア(独自算出の注目度): 25.24509617548819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework for 3D human avatar generation and personalization, leveraging text prompts to enhance user engagement and customization. Central to our approach are key innovations aimed at overcoming the challenges in photo-realistic avatar synthesis. Firstly, we utilize a conditional Neural Radiance Fields (NeRF) model, trained on a large-scale unannotated multi-view dataset, to create a versatile initial solution space that accelerates and diversifies avatar generation. Secondly, we develop a geometric prior, leveraging the capabilities of Text-to-Image Diffusion Models, to ensure superior view invariance and enable direct optimization of avatar geometry. These foundational ideas are complemented by our optimization pipeline built on Variational Score Distillation (VSD), which mitigates texture loss and over-saturation issues. As supported by our extensive experiments, these strategies collectively enable the creation of custom avatars with unparalleled visual quality and better adherence to input text prompts. You can find more results and videos in our website: https://syntec-research.github.io/MagicMirror
- Abstract(参考訳): 本稿では,ユーザエンゲージメントとカスタマイズを高めるために,テキストプロンプトを活用した3次元アバター生成とパーソナライズのための新しいフレームワークを提案する。
われわれのアプローチの中心は、写真リアリスティックなアバター合成の課題を克服するための重要なイノベーションである。
まず、大規模無注釈のマルチビューデータセットに基づいて訓練された条件付きニューラルラジアンスフィールド(NeRF)モデルを用いて、アバター生成を加速し、多様化する多目的初期解空間を作成する。
第2に,テキスト・ツー・イメージ・ディフュージョン・モデルの能力を生かした幾何学的先行モデルを構築し,優れたビュー不変性を確保し,アバター幾何の直接最適化を可能にする。
これらの基礎的考え方は、テクスチャ損失と過飽和問題を緩和する変分スコア蒸留(VSD)に基づく最適化パイプラインによって補完される。
我々の広範な実験で支持されたように、これらの戦略は、相容れない視覚的品質と入力テキストプロンプトへのより優れた順守を備えたカスタムアバターの作成を可能にする。
私たちのWebサイトでは、より多くの結果とビデオが見られます。
関連論文リスト
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
本稿では,GAGAvatar(Generalizable and Animatable Gaussian Head Avatar)を提案する。
我々は、1つの前方通過で1つの画像から3次元ガウスのパラメータを生成する。
提案手法は, 従来の手法と比較して, 再現性や表現精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-10T14:29:00Z) - TEDRA: Text-based Editing of Dynamic and Photoreal Actors [59.480513384611804]
TEDRAはアバターのテキストベースの編集を可能にする最初の方法である。
我々は、実際の俳優の制御可能で高忠実なデジタルレプリカを作成するためにモデルを訓練する。
提供されるテキストプロンプトに基づいて動的アバターを変更する。
論文 参考訳(メタデータ) (2024-08-28T17:59:02Z) - GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars [44.8290935585746]
フォトリアリスティックでコントロール可能な3Dアバターは、バーチャルリアリティー(VR/MR)、テレプレゼンス、ゲーム、映画制作など、様々な用途に欠かせない。
アバター作成の伝統的な方法は、しばしば各アバターのスキャンと再構築に時間を要する。
本稿では,多彩なアイデンティティを持つ写真リアルな顔アバターを生成可能なテキスト条件生成モデルを提案する。
論文 参考訳(メタデータ) (2024-08-24T21:25:22Z) - X-Oscar: A Progressive Framework for High-quality Text-guided 3D Animatable Avatar Generation [63.74194950823133]
X-Oscarはテキストプロンプトから高品質なアニマタブルアバターを生成するためのプログレッシブフレームワークである。
過飽和に対処するために、トレーニング中にアバターを適応分布として表現する適応変分法を導入する。
Avatar-aware Score Distillation Smpling (ASDS) も提案する。
論文 参考訳(メタデータ) (2024-05-02T02:30:39Z) - GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image [89.70322127648349]
本稿では,多種多様な3DMM駆動ヘッドアバターに適用可能な汎用的なアバター編集手法を提案する。
この目的を達成するために、単一の画像から一貫した3D修正フィールドへのリフト2D編集を可能にする新しい表現対応修正生成モデルを設計する。
論文 参考訳(メタデータ) (2024-04-02T17:58:35Z) - One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation [31.310769289315648]
本稿では,1ユーザあたり1枚または数枚の画像のみを利用した高品質なヘッドアバターを作成するための新しいアプローチを提案する。
我々は2407名の被験者から多視点の表情データセットから3次元アニマタブルなフォトリアリスティックヘッドアバターの生成モデルを学習した。
提案手法は,従来のアバター適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-19T07:48:29Z) - InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars [40.10906393484584]
本稿では,複数フレームからの忠実度向上を目的としたアルゴリズムを用いて,アバター復元性能を向上させる新しいフレームワークを提案する。
本アーキテクチャでは,画素対応画像-画像変換を重要視し,観測空間と標準空間の対応を学習する必要性を緩和する。
提案手法は,1ショットと数ショットのアバターアニメーションタスクにおける最先端の性能を示す。
論文 参考訳(メタデータ) (2023-12-03T18:59:15Z) - AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation [14.062402203105712]
AvatarBoothはテキストプロンプトや特定の画像を使って高品質な3Dアバターを生成する新しい方法である。
我々の重要な貢献は、二重微調整拡散モデルを用いた正確なアバター生成制御である。
本稿では,3次元アバター生成の粗大な監視を容易にするマルチレゾリューションレンダリング戦略を提案する。
論文 参考訳(メタデータ) (2023-06-16T14:18:51Z) - Text-Conditional Contextualized Avatars For Zero-Shot Personalization [47.85747039373798]
本研究では,アバターによる画像生成のパーソナライズを可能にするパイプラインを提案する。
私たちのパイプラインはゼロショット、アバターテクスチャ、スタイル非依存で、アバターのトレーニングは一切必要ありません。
大規模な画像データセットを利用して人間の3Dポーズパラメータを学習する方法を初めて示す。
論文 参考訳(メタデータ) (2023-04-14T22:00:44Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
高品質な3Dアバターを作成するためのテキスト・アンド・シェイプ・ガイドフレームワークであるDreamAvatarについて紹介する。
SMPLモデルを利用して、生成のための形状とポーズのガイダンスを提供する。
また、全体とズームインした3Dヘッドから計算した損失を共同で最適化し、一般的なマルチフェイス「Janus」問題を緩和する。
論文 参考訳(メタデータ) (2023-04-03T12:11:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。