Transversal Injection: Using the Surface Code to Prepare Non-Pauli Eigenstates
- URL: http://arxiv.org/abs/2404.01301v1
- Date: Wed, 27 Dec 2023 03:32:03 GMT
- Title: Transversal Injection: Using the Surface Code to Prepare Non-Pauli Eigenstates
- Authors: Jason Gavriel, Daniel Herr, Alexis Shaw, Michael J. Bremner, Alexandru Paler, Simon J. Devitt,
- Abstract summary: Quantum Error Correction (QEC) allows us to use systems with a large number of physical qubits and a favourable logical error rate.
Transversal Injection is a new method of preparing logical non-Pauliigen estates that can be used as resource states for quantum computation.
- Score: 37.94431794242543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of quantum computing systems for large scale algorithms requires targeted error rates unachievable through hardware advancements alone. Quantum Error Correction (QEC) allows us to use systems with a large number of physical qubits to form a fault tolerant system with a lower number of logical qubits and a favourable logical error rate. While some gates can be easily implemented in a QEC code transversally, there is no code that has a universal set of transversal gates. Transversal Injection is a new method of preparing logical non-Pauli eigenstates that can be used as resource states for quantum computation. State preparation can be done directly in the surface code and has the potential to prepare higher fidelity injected states. Compared to other techniques, transversal injection can reduce the resource burden for state distillation protocols. In this paper, the authors present the theory behind this new technique as well as an algorithm for calculating the resulting logical states prepared in the surface code.
Related papers
- Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Automated Synthesis of Fault-Tolerant State Preparation Circuits for Quantum Error Correction Codes [4.2955091080396075]
We propose an automated approach for fault-tolerant state preparation circuits for arbitrary CSS codes.
We provide a general construction for non-deterministic state preparation circuits beyond distance 3.
The resulting methods are publicly available as part of the Munich Quantum Toolkit.
arXiv Detail & Related papers (2024-08-21T18:00:01Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.