Emergent unitary designs for encoded qubits from coherent errors and syndrome measurements
- URL: http://arxiv.org/abs/2412.04414v1
- Date: Thu, 05 Dec 2024 18:36:14 GMT
- Title: Emergent unitary designs for encoded qubits from coherent errors and syndrome measurements
- Authors: Zihan Cheng, Eric Huang, Vedika Khemani, Michael J. Gullans, Matteo Ippoliti,
- Abstract summary: We propose an efficient approach to generate unitary designs for encoded qubits in surface codes.
We numerically show that the ensemble of logical unitaries converges to a unitary design in the thermodynamic limit.
Our results provide a practical way to realize unitary designs on encoded qubits.
- Score: 1.8854166566682866
- License:
- Abstract: Unitary $k$-designs are distributions of unitary gates that match the Haar distribution up to its $k$-th statistical moment. They are a crucial resource for randomized quantum protocols. However, their implementation on encoded logical qubits is nontrivial due to the need for magic gates, which can require a large resource overhead. In this work, we propose an efficient approach to generate unitary designs for encoded qubits in surface codes by applying local unitary rotations ("coherent errors") on the physical qubits followed by syndrome measurement and error correction. We prove that under some conditions on the coherent errors (notably including all single-qubit unitaries) and on the error correcting code, this process induces a unitary transformation of the logical subspace. We numerically show that the ensemble of logical unitaries (indexed by the random syndrome outcomes) converges to a unitary design in the thermodynamic limit, provided the density or strength of coherent errors is above a finite threshold. This "unitary design" phase transition coincides with the code's coherent error threshold under optimal decoding. Furthermore, we propose a classical algorithm to simulate the protocol based on a "staircase" implementation of the surface code encoder and decoder circuits. This enables a mapping to a 1+1D monitored circuit, where we observe an entanglement phase transition (and thus a classical complexity phase transition of the decoding algorithm) coinciding with the aforementioned unitary design phase transition. Our results provide a practical way to realize unitary designs on encoded qubits, with applications including quantum state tomography and benchmarking in error correcting codes.
Related papers
- Developing universal logical state-purification strategy for quantum error correcting codes [0.0]
We develop a protocol for simultaneously purifying arbitrary logical states in multiple quantum error correcting codes with unit fidelity and finite probability.
The protocol entails a time evolution caused by an engineered Hamiltonian, which results in transitions between the logical and error subspaces of the quantum error correcting code mediated by the auxiliary qubit.
We show that purifying the cardinal states of the logical Bloch sphere corresponding to logical qubits in quantum state transfer is feasible utilizing paradigmatic quantum spin models as the generator of the time evolution.
arXiv Detail & Related papers (2025-02-03T14:24:25Z) - Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
We demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit.
We achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit.
arXiv Detail & Related papers (2025-01-08T16:49:27Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.