論文の概要: Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification
- arxiv url: http://arxiv.org/abs/2404.01359v1
- Date: Mon, 1 Apr 2024 10:35:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 20:56:59.856915
- Title: Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification
- Title(参考訳): 画像分類最適化のためのスパイキング量子ニューラルネットワークの並列部分融合
- Authors: Zuyu Xu, Kang Shen, Pengnian Cai, Tao Yang, Yuanming Hu, Shixian Chen, Yunlai Zhu, Zuheng Wu, Yuehua Dai, Jun Wang, Fei Yang,
- Abstract要約: 量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
- 参考スコア(独自算出の注目度): 10.069224006497162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention due to the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-QSNN parameters on network performance for image classification, aiming to identify the optimal configuration. Numerical results on the MNIST dataset unequivocally illustrate that our proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness. This study introduces a novel and effective amalgamation approach for HQCNN, thereby laying the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
- Abstract(参考訳): 最近のハイブリッド量子古典ニューラルネットワーク(HQCNN)アーキテクチャの出現は、機械学習アルゴリズムと計算のさまざまな側面を強化するために量子原理を統合することに関連する潜在的なアドバンテージにより、大きな注目を集めている。
しかし、現在のHQCNNのシリアル構造は、あるネットワークから別のネットワークへ次々に情報を伝達するものであり、ネットワークの訓練性や表現性に制限を課すことが多い。
本研究では,Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN) と呼ばれる新しいアーキテクチャを提案する。
データセット情報は、スパイキングニューラルネットワークと変分量子回路の両方に同時に供給され、出力は個々のコントリビューションに比例する。
画像分類のためのネットワーク性能に対する多様なPPF-QSNNパラメータの影響を系統的に評価し,最適構成の同定を目的とした。
MNISTデータセットの数値結果は、提案したPPF-QSNNが、既存のスパイキングニューラルネットワークと、精度、損失、ロバスト性といったメトリクスにわたって、シリアル量子ニューラルネットワークよりも優れていることを示している。
本研究は,HQCNNにおける新しい,効果的なアマルガメーション手法を導入し,人工知能計算における量子アドバンテージの進展と応用の基礎を築いた。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
ハイブリッド量子古典ニューラルネットワーク(HQNN)は、古典的な機械学習の強みと量子コンピューティング能力を組み合わせた、有望なソリューションである。
本稿では,PennyLaneフレームワーク上に実装された画像分類タスクのHQNNモデルに対して,これらのバリエーションが与える影響について検討する。
我々は,HQNNモデルの直感的および直感的学習パターンを制御された量子摂動の粒度レベル内で明らかにし,精度とトレーニング時間との相関関係の健全な基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2024-02-16T11:44:25Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。