The Radar Ghost Dataset -- An Evaluation of Ghost Objects in Automotive Radar Data
- URL: http://arxiv.org/abs/2404.01437v1
- Date: Mon, 1 Apr 2024 19:20:32 GMT
- Title: The Radar Ghost Dataset -- An Evaluation of Ghost Objects in Automotive Radar Data
- Authors: Florian Kraus, Nicolas Scheiner, Werner Ritter, Klaus Dietmayer,
- Abstract summary: A lot more surfaces in a typical traffic scenario appear flat relative to the radar's emitted signal.
This results in multi-path reflections or so called ghost detections in the radar signal.
We present a dataset with detailed manual annotations for different kinds of ghost detections.
- Score: 12.653873936535149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar sensors have a long tradition in advanced driver assistance systems (ADAS) and also play a major role in current concepts for autonomous vehicles. Their importance is reasoned by their high robustness against meteorological effects, such as rain, snow, or fog, and the radar's ability to measure relative radial velocity differences via the Doppler effect. The cause for these advantages, namely the large wavelength, is also one of the drawbacks of radar sensors. Compared to camera or lidar sensor, a lot more surfaces in a typical traffic scenario appear flat relative to the radar's emitted signal. This results in multi-path reflections or so called ghost detections in the radar signal. Ghost objects pose a major source for potential false positive detections in a vehicle's perception pipeline. Therefore, it is important to be able to segregate multi-path reflections from direct ones. In this article, we present a dataset with detailed manual annotations for different kinds of ghost detections. Moreover, two different approaches for identifying these kinds of objects are evaluated. We hope that our dataset encourages more researchers to engage in the fields of multi-path object suppression or exploitation.
Related papers
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Anomaly Detection in Radar Data Using PointNets [7.3600716208089825]
We present an approach based on PointNets to detect anomalous radar targets.
Our method is evaluated on a real-world dataset in urban scenarios.
arXiv Detail & Related papers (2021-09-20T10:02:24Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Multi-View Radar Semantic Segmentation [3.2093811507874768]
Automotive radars are low-cost active sensors that measure properties of surrounding objects.
They are seldom used for scene understanding due to the size and complexity of radar raw data.
We propose several novel architectures, and their associated losses, which analyse multiple "views" of the range-angle-Doppler radar tensor to segment it semantically.
arXiv Detail & Related papers (2021-03-30T09:56:41Z) - Motion Classification and Height Estimation of Pedestrians Using Sparse
Radar Data [8.366962883442035]
It is possible to estimate the body height of walking pedestrians using 2D radar targets.
Different pedestrian motion types are classified.
This work demonstrates that it is possible to estimate the body height of walking pedestrians using 2D radar targets.
arXiv Detail & Related papers (2021-03-03T09:36:11Z) - All-Weather Object Recognition Using Radar and Infrared Sensing [1.7513645771137178]
This thesis explores new sensing developments based on long wave polarised infrared (IR) imagery and imaging radar to recognise objects.
First, we developed a methodology based on Stokes parameters using polarised infrared data to recognise vehicles using deep neural networks.
Second, we explored the potential of using only the power spectrum captured by low-THz radar sensors to perform object recognition in a controlled scenario.
Last, we created a new large-scale dataset in the "wild" with many different weather scenarios showing radar robustness to detect vehicles in adverse weather.
arXiv Detail & Related papers (2020-10-30T14:16:39Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - Using Machine Learning to Detect Ghost Images in Automotive Radar [13.685321476701128]
We present a novel approach to detect ghost objects by applying data-driven machine learning algorithms.
We show that we can use a state-of-the-art automotive radar classifier in order to detect ghost objects alongside real objects.
arXiv Detail & Related papers (2020-07-10T09:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.