TraveLER: A Modular Multi-LMM Agent Framework for Video Question-Answering
- URL: http://arxiv.org/abs/2404.01476v2
- Date: Sat, 19 Oct 2024 19:21:51 GMT
- Title: TraveLER: A Modular Multi-LMM Agent Framework for Video Question-Answering
- Authors: Chuyi Shang, Amos You, Sanjay Subramanian, Trevor Darrell, Roei Herzig,
- Abstract summary: We introduce a modular multi-LMM agent framework based on several agents with different roles.
Specifically, we propose TraveLER, a method that can create a plan to "Traverse" through the video.
We find that the proposed TraveLER approach improves performance on several VideoQA benchmarks without the need to fine-tune on specific datasets.
- Score: 48.55956886819481
- License:
- Abstract: Recently, image-based Large Multimodal Models (LMMs) have made significant progress in video question-answering (VideoQA) using a frame-wise approach by leveraging large-scale pretraining in a zero-shot manner. Nevertheless, these models need to be capable of finding relevant information, extracting it, and answering the question simultaneously. Currently, existing methods perform all of these steps in a single pass without being able to adapt if insufficient or incorrect information is collected. To overcome this, we introduce a modular multi-LMM agent framework based on several agents with different roles, instructed by a Planner agent that updates its instructions using shared feedback from the other agents. Specifically, we propose TraveLER, a method that can create a plan to "Traverse" through the video, ask questions about individual frames to "Locate" and store key information, and then "Evaluate" if there is enough information to answer the question. Finally, if there is not enough information, our method is able to "Replan" based on its collected knowledge. Through extensive experiments, we find that the proposed TraveLER approach improves performance on several VideoQA benchmarks without the need to fine-tune on specific datasets. Our code is available at https://github.com/traveler-framework/TraveLER.
Related papers
- DLM-VMTL:A Double Layer Mapper for heterogeneous data video Multi-task prompt learning [2.4121373594852846]
Multi-Task Learning makes the visual task acquire the rich shareable knowledge from other tasks while joint training.
Heterogenous data video multi-task prompt learning (VMTL) method is proposed to address above problem.
Double-Layers Mapper(DLM) is proposed to extract the shareable knowledge into visual promptS and align it with representation of primary task.
arXiv Detail & Related papers (2024-08-29T01:25:36Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks [31.031053149807857]
We introduce m&m's: a benchmark containing 4K+ multi-step multi-modal tasks involving 33 tools.
For each of these task queries, we provide automatically generated plans using this realistic toolset.
We provide a high-quality subset of 1,565 task plans that are human-verified and correctly.
arXiv Detail & Related papers (2024-03-17T04:36:18Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
We introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA.
MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules.
Visual concepts at different granularities are then processed efficiently through an attention module.
arXiv Detail & Related papers (2022-12-19T15:05:40Z) - Multilevel Hierarchical Network with Multiscale Sampling for Video
Question Answering [16.449212284367366]
We propose a novel Multilevel Hierarchical Network (MHN) with multiscale sampling for VideoQA.
MHN comprises two modules, namely Recurrent Multimodal Interaction (RMI) and Parallel Visual Reasoning (PVR)
With a multiscale sampling, RMI iterates the interaction of appearance-motion information at each scale and the question embeddings to build the multilevel question-guided visual representations.
PVR infers the visual cues at each level in parallel to fit with answering different question types that may rely on the visual information at relevant levels.
arXiv Detail & Related papers (2022-05-09T06:28:56Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.