MosquitoFusion: A Multiclass Dataset for Real-Time Detection of Mosquitoes, Swarms, and Breeding Sites Using Deep Learning
- URL: http://arxiv.org/abs/2404.01501v1
- Date: Mon, 1 Apr 2024 21:49:05 GMT
- Title: MosquitoFusion: A Multiclass Dataset for Real-Time Detection of Mosquitoes, Swarms, and Breeding Sites Using Deep Learning
- Authors: Md. Faiyaz Abdullah Sayeedi, Fahim Hafiz, Md Ashiqur Rahman,
- Abstract summary: We present an integrated approach to real-time mosquito detection using our multiclass dataset (MosquitoFusion) containing 1204 diverse images.
The pre-trained YOLOv8 model, trained on this dataset, achieved a mean Average Precision (mAP@50) of 57.1%, with precision at 73.4% and recall at 50.5%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present an integrated approach to real-time mosquito detection using our multiclass dataset (MosquitoFusion) containing 1204 diverse images and leverage cutting-edge technologies, specifically computer vision, to automate the identification of Mosquitoes, Swarms, and Breeding Sites. The pre-trained YOLOv8 model, trained on this dataset, achieved a mean Average Precision (mAP@50) of 57.1%, with precision at 73.4% and recall at 50.5%. The integration of Geographic Information Systems (GIS) further enriches the depth of our analysis, providing valuable insights into spatial patterns. The dataset and code are available at https://github.com/faiyazabdullah/MosquitoFusion.
Related papers
- DataComp-LM: In search of the next generation of training sets for language models [200.5293181577585]
DataComp for Language Models (DCLM) is a testbed for controlled dataset experiments with the goal of improving language models.
We provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations.
Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters.
arXiv Detail & Related papers (2024-06-17T17:42:57Z) - Country-Scale Cropland Mapping in Data-Scarce Settings Using Deep
Learning: A Case Study of Nigeria [0.6827423171182154]
We combine a global cropland dataset and a hand-labeled dataset to train machine learning models for generating a new cropland map for Nigeria in 2020 at 10 m resolution.
We provide the models with pixel-wise time series input data from remote sensing sources such as Sentinel-1 and 2, ERA5 climate data, and DEM data, in addition to binary labels indicating cropland presence.
We find that the existing WorldCover map performs the best with an F1-score of 0.825 and accuracy of 0.870 on the test set, followed by a single-headed LSTM model trained with our hand-labeled training
arXiv Detail & Related papers (2023-12-18T01:23:22Z) - Whole-body Detection, Recognition and Identification at Altitude and
Range [57.445372305202405]
We propose an end-to-end system evaluated on diverse datasets.
Our approach involves pre-training the detector on common image datasets and fine-tuning it on BRIAR's complex videos and images.
We conduct thorough evaluations under various conditions, such as different ranges and angles in indoor, outdoor, and aerial scenarios.
arXiv Detail & Related papers (2023-11-09T20:20:23Z) - Deep-Learning Framework for Optimal Selection of Soil Sampling Sites [0.0]
This work leverages the recent advancements of deep learning in image processing to find optimal locations that present the important characteristics of a field.
Our framework is constructed with an encoder-decoder architecture with the self-attention mechanism as the backbone.
The model has achieved impressive results on the testing dataset, with a mean accuracy of 99.52%, a mean Intersection over Union (IoU) of 57.35%, and a mean Dice Coefficient of 71.47%.
arXiv Detail & Related papers (2023-09-02T16:19:21Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - Scaling multi-species occupancy models to large citizen science datasets [0.0]
We develop approximate Bayesian inference methods to scale multi-species occupancy models to large datasets.
We evaluate the predictions on a spatially separated test set of 59,338 records.
We find that modelling the detection process greatly improves agreement and that the resulting maps agree as closely with expert maps as ones estimated using high quality survey data.
arXiv Detail & Related papers (2022-06-17T16:54:56Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Automatic Detection of Aedes aegypti Breeding Grounds Based on Deep
Networks with Spatio-Temporal Consistency [2.4858193569899907]
Aedes aegypti mosquito infects millions of people with diseases such as dengue zika, chikungunya, and urban yellow fever.
Main form to combat these diseases is to avoid mosquito reproduction by searching for and eliminating the potential mosquito breeding grounds.
In this work, we introduce a comprehensive dataset of aerial videos, acquired with an unmanned aerial vehicle, containing possible mosquito breeding sites.
arXiv Detail & Related papers (2020-07-29T14:30:54Z) - Mission-Aware Spatio-Temporal Deep Learning Model for UAS Instantaneous
Density Prediction [3.59465210252619]
Number of daily sUAS operations in uncontrolled low altitude airspace is expected to reach into the millions in a few years.
Deep learning-based UAS instantaneous density prediction model is presented.
arXiv Detail & Related papers (2020-03-22T02:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.