論文の概要: WaveDH: Wavelet Sub-bands Guided ConvNet for Efficient Image Dehazing
- arxiv url: http://arxiv.org/abs/2404.01604v1
- Date: Tue, 2 Apr 2024 02:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 18:08:16.144368
- Title: WaveDH: Wavelet Sub-bands Guided ConvNet for Efficient Image Dehazing
- Title(参考訳): WaveDH: 効率的な画像デハージングのためのConvNetガイド付きウェーブレットサブバンド
- Authors: Seongmin Hwang, Daeyoung Han, Cheolkon Jung, Moongu Jeon,
- Abstract要約: 画像デハージングにおけるこの効率ギャップに対処するために設計された,新規でコンパクトなConvNetであるWaveDHを紹介する。
我々のWaveDHはウェーブレットサブバンドを利用して、誘導型アップ・アンド・ダウンサンプリングと周波数認識機能の改良を行う。
提案手法であるWaveDHは,計算コストを大幅に削減した画像デハージングベンチマークにおいて,最先端の多くの手法より優れている。
- 参考スコア(独自算出の注目度): 20.094839751816806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The surge in interest regarding image dehazing has led to notable advancements in deep learning-based single image dehazing approaches, exhibiting impressive performance in recent studies. Despite these strides, many existing methods fall short in meeting the efficiency demands of practical applications. In this paper, we introduce WaveDH, a novel and compact ConvNet designed to address this efficiency gap in image dehazing. Our WaveDH leverages wavelet sub-bands for guided up-and-downsampling and frequency-aware feature refinement. The key idea lies in utilizing wavelet decomposition to extract low-and-high frequency components from feature levels, allowing for faster processing while upholding high-quality reconstruction. The downsampling block employs a novel squeeze-and-attention scheme to optimize the feature downsampling process in a structurally compact manner through wavelet domain learning, preserving discriminative features while discarding noise components. In our upsampling block, we introduce a dual-upsample and fusion mechanism to enhance high-frequency component awareness, aiding in the reconstruction of high-frequency details. Departing from conventional dehazing methods that treat low-and-high frequency components equally, our feature refinement block strategically processes features with a frequency-aware approach. By employing a coarse-to-fine methodology, it not only refines the details at frequency levels but also significantly optimizes computational costs. The refinement is performed in a maximum 8x downsampled feature space, striking a favorable efficiency-vs-accuracy trade-off. Extensive experiments demonstrate that our method, WaveDH, outperforms many state-of-the-art methods on several image dehazing benchmarks with significantly reduced computational costs. Our code is available at https://github.com/AwesomeHwang/WaveDH.
- Abstract(参考訳): 画像デハージングに対する関心の高まりは、ディープラーニングベースのシングルイメージデハージングアプローチの顕著な進歩をもたらし、近年の研究で顕著なパフォーマンスを示している。
これらの努力にもかかわらず、多くの既存の手法は実用アプリケーションの効率性の要求を満たすのに不足している。
本稿では、画像デハージングにおけるこの効率ギャップに対処するために設計された、新しいコンパクトなConvNetであるWaveDHを紹介する。
我々のWaveDHはウェーブレットサブバンドを利用して、誘導型アップ・アンド・ダウンサンプリングと周波数認識機能の改良を行う。
主要なアイデアはウェーブレット分解を利用して特徴レベルから低周波成分を抽出し、高品質な再構成を保ちながら高速な処理を可能にすることである。
ダウンサンプリングブロックは、ノイズ成分を廃棄しながら識別的特徴を保存するウェーブレットドメイン学習を通じて、構造的にコンパクトな機能ダウンサンプリングプロセスを最適化する、新しい圧縮・アンド・アテンション方式を採用している。
増幅ブロックでは、高頻度のコンポーネント認識を高めるための二重アップサンプルと融合機構を導入し、高周波の詳細の再構築を支援する。
低周波成分と高周波成分を均等に処理する従来の脱臭方法とは別に,我々の特徴改善ブロックは周波数認識方式で特徴を戦略的に処理する。
粗い手法を用いることで、周波数レベルで細部を洗練するだけでなく、計算コストを大幅に最適化する。
精錬は最大8倍のダウンサンプリングされた特徴空間で行われ、良好な効率とvs精度のトレードオフを達成できる。
大規模な実験により、我々の手法であるWaveDHは、計算コストを大幅に削減した画像デハージングベンチマークにおいて、多くの最先端の手法より優れていることが示された。
私たちのコードはhttps://github.com/AwesomeHwang/WaveDH.comで公開されています。
関連論文リスト
- Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement [7.891750065129094]
ウェーブレット領域から導出される2つの重要な洞察に基づく新しいアプローチであるWave-Mambaを提案する。
提案手法は優れた性能を示し, 従来の先行技術を大きく上回っている。
論文 参考訳(メタデータ) (2024-08-02T14:01:34Z) - Efficient Face Super-Resolution via Wavelet-based Feature Enhancement Network [27.902725520665133]
顔超解像は、低解像度の顔画像から高解像度の顔画像を再構成することを目的としている。
以前は、顔の構造的特徴を抽出するためにエンコーダ・デコーダ構造を用いていた。
本稿では,ウェーブレットに基づく特徴拡張ネットワークを提案する。このネットワークは,入力特徴を高周波数成分と低周波数成分に無作為に分解することで,特徴歪みを軽減する。
論文 参考訳(メタデータ) (2024-07-29T08:03:33Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - RFWave: Multi-band Rectified Flow for Audio Waveform Reconstruction [12.64898580131053]
本稿では,メルスペクトルや離散音響トークンから高忠実度音声波形を再構成する,最先端マルチバンド整流流法RFWaveを紹介する。
RFWaveは複雑なスペクトログラムを独自に生成し、フレームレベルで動作し、全てのサブバンドを同時に処理して効率を向上する。
実験により、RFWaveは優れた再構成品質を提供するだけでなく、計算効率も非常に優れており、GPU上でのオーディオ生成は、リアルタイムよりも最大160倍高速であることがわかった。
論文 参考訳(メタデータ) (2024-03-08T03:16:47Z) - Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion [28.049668999586583]
本稿では,CLIP-Fourier Guided Wavelet Diffusion(CFWD)による新しい低照度画像強調手法を提案する。
CFWDは、複数のウェーブレット変換によって生成される周波数領域空間におけるマルチモーダル視覚言語情報を活用して、拡張プロセスの導出を行う。
提案手法は既存の最先端手法よりも優れ,画像品質と雑音抑制の大幅な進歩を実現している。
論文 参考訳(メタデータ) (2024-01-08T10:08:48Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - LC-FDNet: Learned Lossless Image Compression with Frequency
Decomposition Network [14.848279912686948]
近年の学習に基づく画像圧縮法では,高周波領域の性能低下は考慮されていない。
本稿では,低周波領域と高周波領域を分離処理するために,粗大な方法で符号化を進める新しい手法を提案する。
実験により,提案手法はベンチマーク高解像度データセットの最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-12-13T04:49:34Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
光学フローベースやエンド・ツー・エンドのディープラーニングベースのソリューションのような既存の方法は、詳細な復元やゴーストを除去する際にエラーを起こしやすい。
本研究では、周波数領域でHDR融合を行うための新しい周波数誘導型エンド・ツー・エンドディープニューラルネットワーク(FNet)を提案し、ウェーブレット変換(DWT)を用いて入力を異なる周波数帯域に分解する。
低周波信号は特定のゴーストアーティファクトを避けるために使用され、高周波信号は詳細を保存するために使用される。
論文 参考訳(メタデータ) (2021-08-03T12:26:33Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。