論文の概要: Fourier Space Losses for Efficient Perceptual Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2106.00783v1
- Date: Tue, 1 Jun 2021 20:34:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:23:58.889543
- Title: Fourier Space Losses for Efficient Perceptual Image Super-Resolution
- Title(参考訳): 知覚画像の高分解能化のためのフーリエ空間損失
- Authors: Dario Fuoli, Luc Van Gool, and Radu Timofte
- Abstract要約: 提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
- 参考スコア(独自算出の注目度): 131.50099891772598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many super-resolution (SR) models are optimized for high performance only and
therefore lack efficiency due to large model complexity. As large models are
often not practical in real-world applications, we investigate and propose
novel loss functions, to enable SR with high perceptual quality from much more
efficient models. The representative power for a given low-complexity generator
network can only be fully leveraged by strong guidance towards the optimal set
of parameters. We show that it is possible to improve the performance of a
recently introduced efficient generator architecture solely with the
application of our proposed loss functions. In particular, we use a Fourier
space supervision loss for improved restoration of missing high-frequency (HF)
content from the ground truth image and design a discriminator architecture
working directly in the Fourier domain to better match the target HF
distribution. We show that our losses' direct emphasis on the frequencies in
Fourier-space significantly boosts the perceptual image quality, while at the
same time retaining high restoration quality in comparison to previously
proposed loss functions for this task. The performance is further improved by
utilizing a combination of spatial and frequency domain losses, as both
representations provide complementary information during training. On top of
that, the trained generator achieves comparable results with and is 2.4x and
48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow
respectively.
- Abstract(参考訳): 多くの超解像モデル (SR) は高性能に最適化されているため、大きなモデルの複雑さのために効率が良くない。
大規模モデルは実世界の応用では実用的ではないことが多いため、より効率的なモデルから高い知覚品質のSRを実現するために、新しい損失関数を研究・提案する。
与えられた低複雑性ジェネレータネットワークの代表電力は、パラメータの最適セットに対する強いガイダンスによってのみ活用できる。
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
特に,フーリエ領域において直接動作する識別器アーキテクチャを設計し,対象のhf分布をよりよく一致させるため,フーリエ空間監督損失を用いて,地上真理画像から欠落した高周波(hf)コンテンツを復元する。
フーリエ空間における損失の直接的強調は知覚的画質を著しく向上させると同時に,従来提案されていた損失関数と比較して高い復元品質を維持していることを示す。
両方の表現がトレーニング中に相補的な情報を提供するので、空間領域と周波数領域の損失の組み合わせを利用してさらに性能を向上する。
それに加えて、訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
関連論文リスト
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
論文 参考訳(メタデータ) (2024-08-25T03:53:17Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
ハイパースペクトル画像(HSI)の復元は、劣化した観察からクリーンなイメージを復元することを目的としている。
既存のモデルに基づく手法は、複雑な画像の特徴を正確にモデル化するのに限界がある。
本稿では,事前学習拡散モデル(HIR-Diff)を用いた教師なしHSI復元フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T17:15:05Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRFは、ベクトル量子化による暗黙の神経表現を強化するための効率的なパイプラインである。
圧縮および原スケールの両スケールでNeRFモデルを同時に最適化する,革新的なマルチスケールNeRFサンプリング方式を提案する。
我々は3次元再構成の幾何学的忠実度とセマンティックコヒーレンスを改善するためにセマンティックロス関数を組み込んだ。
論文 参考訳(メタデータ) (2023-10-23T01:41:38Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
本研究では,Residual Local Feature Network (RLFN)を提案する。
主なアイデアは、3つの畳み込みレイヤを局所的な特徴学習に使用して、機能の集約を単純化することだ。
さらに,NTIRE 2022の高効率超解像問題において,第1位を獲得した。
論文 参考訳(メタデータ) (2022-05-16T08:46:34Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
論文 参考訳(メタデータ) (2021-11-21T11:49:12Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
本稿では,高速ポーズ推定のためのLR表現を用いた費用対効果ネットワークの設計パラダイムであるFasterPoseを提案する。
我々は,FasterPoseのトレーニング挙動について検討し,収束を加速する新しい回帰クロスエントロピー(RCE)損失関数を定式化する。
従来のポーズ推定ネットワークと比較すると,FLOPの58%が減少し,精度が1.3%向上した。
論文 参考訳(メタデータ) (2021-07-07T13:39:08Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。