Spin-UP: Spin Light for Natural Light Uncalibrated Photometric Stereo
- URL: http://arxiv.org/abs/2404.01612v1
- Date: Tue, 2 Apr 2024 03:29:23 GMT
- Title: Spin-UP: Spin Light for Natural Light Uncalibrated Photometric Stereo
- Authors: Zongrui Li, Zhan Lu, Haojie Yan, Boxin Shi, Gang Pan, Qian Zheng, Xudong Jiang,
- Abstract summary: Natural Light Uncalibrated Photometric Stereo (NaUPS) relieves the strict environment and light assumptions in classical Uncalibrated Photometric Stereo (UPS) methods.
Existing works impose strong assumptions on the environment lights and objects' material, restricting the effectiveness in more general scenarios.
We propose Spin Light Uncalibrated Photometric Stereo (Spin-UP), an unsupervised method to tackle NaUPS in various environment lights and objects.
- Score: 68.90962272268793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural Light Uncalibrated Photometric Stereo (NaUPS) relieves the strict environment and light assumptions in classical Uncalibrated Photometric Stereo (UPS) methods. However, due to the intrinsic ill-posedness and high-dimensional ambiguities, addressing NaUPS is still an open question. Existing works impose strong assumptions on the environment lights and objects' material, restricting the effectiveness in more general scenarios. Alternatively, some methods leverage supervised learning with intricate models while lacking interpretability, resulting in a biased estimation. In this work, we proposed Spin Light Uncalibrated Photometric Stereo (Spin-UP), an unsupervised method to tackle NaUPS in various environment lights and objects. The proposed method uses a novel setup that captures the object's images on a rotatable platform, which mitigates NaUPS's ill-posedness by reducing unknowns and provides reliable priors to alleviate NaUPS's ambiguities. Leveraging neural inverse rendering and the proposed training strategies, Spin-UP recovers surface normals, environment light, and isotropic reflectance under complex natural light with low computational cost. Experiments have shown that Spin-UP outperforms other supervised / unsupervised NaUPS methods and achieves state-of-the-art performance on synthetic and real-world datasets. Codes and data are available at https://github.com/LMozart/CVPR2024-SpinUP.
Related papers
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments.
Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources.
We devise a novel unsupervised LIE framework based on diffusion priors and lookup tables to achieve efficient low-light image recovery.
arXiv Detail & Related papers (2024-09-27T16:37:27Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
We propose a CNN-based approach capable of handling realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo.
Our approach outperforms the state-of-the-art on the DiLiGenT real world dataset.
In order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo'
arXiv Detail & Related papers (2022-10-10T12:57:12Z) - NeIF: Representing General Reflectance as Neural Intrinsics Fields for
Uncalibrated Photometric Stereo [70.71400320657035]
Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by unknown light.
This paper establishes an implicit relation between light clues and light estimation and solves UPS in an unsupervised manner.
arXiv Detail & Related papers (2022-08-18T15:11:24Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
Cycle-Interactive Generative Adversarial Network (CIGAN) is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals.
In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN into the generator of degradation GAN.
arXiv Detail & Related papers (2022-07-03T06:37:46Z) - Unsupervised Low-Light Image Enhancement via Histogram Equalization
Prior [40.61944814314655]
We propose an unsupervised low-light image enhancement method based on an effective prior histogram termed equalization prior (HEP)
We introduce a Noise Disentanglement Module (NDM) to disentangle the noise and content in the reflectance maps with the reliable aid of unpaired clean images.
Our method performs favorably against the state-of-the-art unsupervised low-light enhancement algorithms and even matches the state-of-the-art supervised algorithms.
arXiv Detail & Related papers (2021-12-03T07:51:08Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
We present a data-driven model that estimates an HDR lighting environment map from a single LDR monocular spherical panorama.
We exploit the availability of surface geometry to employ image-based relighting as a data generator and supervision mechanism.
arXiv Detail & Related papers (2020-05-16T14:23:05Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.