LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network
- URL: http://arxiv.org/abs/2404.01614v1
- Date: Tue, 2 Apr 2024 03:36:07 GMT
- Title: LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network
- Authors: Hanqian Li, Ruinan Zhang, Ye Pan, Junchi Ren, Fei Shen,
- Abstract summary: We propose a novel location refined feature pyramid network (LR-FPN) to enhance the extraction of shallow positional information.
Experiments on two large-scale remote sensing datasets demonstrate that the proposed LR-FPN is superior to state-of-the-art object detection approaches.
- Score: 2.028685490378346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing target detection aims to identify and locate critical targets within remote sensing images, finding extensive applications in agriculture and urban planning. Feature pyramid networks (FPNs) are commonly used to extract multi-scale features. However, existing FPNs often overlook extracting low-level positional information and fine-grained context interaction. To address this, we propose a novel location refined feature pyramid network (LR-FPN) to enhance the extraction of shallow positional information and facilitate fine-grained context interaction. The LR-FPN consists of two primary modules: the shallow position information extraction module (SPIEM) and the contextual interaction module (CIM). Specifically, SPIEM first maximizes the retention of solid location information of the target by simultaneously extracting positional and saliency information from the low-level feature map. Subsequently, CIM injects this robust location information into different layers of the original FPN through spatial and channel interaction, explicitly enhancing the object area. Moreover, in spatial interaction, we introduce a simple local and non-local interaction strategy to learn and retain the saliency information of the object. Lastly, the LR-FPN can be readily integrated into common object detection frameworks to improve performance significantly. Extensive experiments on two large-scale remote sensing datasets (i.e., DOTAV1.0 and HRSC2016) demonstrate that the proposed LR-FPN is superior to state-of-the-art object detection approaches. Our code and models will be publicly available.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
arXiv Detail & Related papers (2024-08-05T08:35:59Z) - Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target.
We propose a multi-scale direction-aware network (MSDA-Net) to integrate the high-frequency directional features of infrared small targets.
MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
arXiv Detail & Related papers (2024-06-04T07:23:09Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and
Local Information [15.32353270625554]
Cross-modal remote sensing text-image retrieval (RSCTIR) has recently become an urgent research hotspot due to its ability of enabling fast and flexible information extraction on remote sensing (RS) images.
We first propose a novel RSCTIR framework based on global and local information (GaLR), and design a multi-level information dynamic fusion (MIDF) module to efficaciously integrate features of different levels.
Experiments on public datasets strongly demonstrate the state-of-the-art performance of GaLR methods on the RSCTIR task.
arXiv Detail & Related papers (2022-04-21T03:18:09Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - An Attention-Fused Network for Semantic Segmentation of
Very-High-Resolution Remote Sensing Imagery [26.362854938949923]
We propose a novel convolutional neural network architecture, named attention-fused network (AFNet)
We achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and the ISPRS Potsdam 2D dataset.
arXiv Detail & Related papers (2021-05-10T06:23:27Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - Personal Fixations-Based Object Segmentation with Object Localization
and Boundary Preservation [60.41628937597989]
We focus on Personal Fixations-based Object (PFOS) to address issues in previous studies.
We propose a novel network based on Object Localization and Boundary Preservation (OLBP) to segment the gazed objects.
OLBP is organized in the mixed bottom-up and top-down manner with multiple types of deep supervision.
arXiv Detail & Related papers (2021-01-22T09:20:47Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.