論文の概要: AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation
- arxiv url: http://arxiv.org/abs/2404.01625v2
- Date: Wed, 3 Apr 2024 06:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 11:43:37.904859
- Title: AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation
- Title(参考訳): AAA : 局所的に異なる個人平均推定のための適応的メカニズム
- Authors: Fei Wei, Ergute Bao, Xiaokui Xiao, Yin Yang, Bolin Ding,
- Abstract要約: ローカルディファレンシャルプライバシ(LDP)は、一般的なソフトウェアシステムで採用されている強力なプライバシ標準である。
本稿では, 平均効用に対処する分布認識手法である, 適応型アダプティブ (AAA) 機構を提案する。
我々は、厳密なプライバシー証明、ユーティリティ分析、そしてAAAと最先端のメカニズムを比較した広範な実験を提供する。
- 参考スコア(独自算出の注目度): 42.95927712062214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local differential privacy (LDP) is a strong privacy standard that has been adopted by popular software systems. The main idea is that each individual perturbs their own data locally, and only submits the resulting noisy version to a data aggregator. Although much effort has been devoted to computing various types of aggregates and building machine learning applications under LDP, research on fundamental perturbation mechanisms has not achieved significant improvement in recent years. Towards a more refined result utility, existing works mainly focus on improving the worst-case guarantee. However, this approach does not necessarily promise a better average performance given the fact that the data in practice obey a certain distribution, which is not known beforehand. In this paper, we propose the advanced adaptive additive (AAA) mechanism, which is a distribution-aware approach that addresses the average utility and tackles the classical mean estimation problem. AAA is carried out in a two-step approach: first, as the global data distribution is not available beforehand, the data aggregator selects a random subset of individuals to compute a (noisy) quantized data descriptor; then, the data aggregator collects data from the remaining individuals, which are perturbed in a distribution-aware fashion. The perturbation involved in the latter step is obtained by solving an optimization problem, which is formulated with the data descriptor obtained in the former step and the desired properties of task-determined utilities. We provide rigorous privacy proofs, utility analyses, and extensive experiments comparing AAA with state-of-the-art mechanisms. The evaluation results demonstrate that the AAA mechanism consistently outperforms existing solutions with a clear margin in terms of result utility, on a wide range of privacy constraints and real-world and synthetic datasets.
- Abstract(参考訳): ローカルディファレンシャルプライバシ(LDP)は、一般的なソフトウェアシステムで採用されている強力なプライバシ標準である。
主な考え方は、個々のデータがローカルに摂動し、結果のノイズバージョンをデータアグリゲータにのみ送信するというものである。
様々な種類の集約の計算やLDPによる機械学習アプリケーションの構築に多くの努力が注がれているが、近年は基本的な摂動機構の研究は大きな進歩を遂げていない。
より洗練された結果ユーティリティを目指して、既存の作業は主に最悪のケースの保証を改善することに焦点を当てている。
しかし、実際にはデータが特定の分布に従うという事実を考えると、このアプローチは必ずしもより良い平均性能を約束するわけではない。
本稿では,平均効用に対処し,古典的平均推定問題に対処する分布認識手法である高度適応型加算(AAA)機構を提案する。
AAAは、2段階のアプローチで実行される: まず、グローバルなデータ分布が事前に利用できないため、データ集約器は、(ノイズの多い)量子化されたデータ記述子を計算するために、個人のランダムなサブセットを選択し、次に、データ集約器は、分布を意識した方法で、残りの個人からデータを収集する。
後者のステップに関わる摂動は、前ステップで得られたデータ記述子とタスク決定ユーティリティの所望の特性とで定式化された最適化問題を解くことにより得られる。
我々は、厳密なプライバシー証明、ユーティリティ分析、そしてAAAと最先端のメカニズムを比較した広範な実験を提供する。
評価結果は、AAAメカニズムが、幅広いプライバシー制約と実世界および合成データセットに基づいて、結果ユーティリティの観点から、既存のソリューションよりも明確なマージンで一貫して優れていることを示す。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
複数のバイアスのあるデータソースを活用することにより,対象個体数の分布自由な予測区間を得るという課題を考察する。
対象集団および源集団における未観測結果の定量値に対する効率的な影響関数を導出する。
本稿では、効率向上のための重み付き情報ソースとバイアス低減のための重み付き非情報ソースに対するデータ適応戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T13:33:09Z) - Noise Variance Optimization in Differential Privacy: A Game-Theoretic Approach Through Per-Instance Differential Privacy [7.264378254137811]
差分プライバシー(DP)は、個人をターゲットデータセットに含めることによる分布の変化を観察することにより、プライバシー損失を測定することができる。
DPは、AppleやGoogleのような業界巨人の機械学習におけるデータセットの保護において際立っている。
本稿では,PDPを制約として提案し,各データインスタンスのプライバシ損失を測定し,個々のインスタンスに適したノイズを最適化する。
論文 参考訳(メタデータ) (2024-04-24T06:51:16Z) - Differentially Private Distributed Convex Optimization [0.0]
分散最適化では、複数のエージェントが協力し、局所的な目的の和として表される大域的目的関数を最小化する。
ローカルに保存されたデータは、他のエージェントと共有されないため、機密性の高いデータを持つアプリケーションにおけるDOの実用的使用を制限する可能性がある。
本稿では,制約付き凸最適化モデルに対するプライバシー保護型DOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-28T12:07:27Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
本稿では,少数の対向マシンに対してロバスト性を保証するアルゴリズムによって得られた誤差を,まず厳密に解析する。
私たちの分析は、プライバシ、堅牢性、ユーティリティの基本的なトレードオフを示しています。
論文 参考訳(メタデータ) (2023-02-09T17:24:18Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。