論文の概要: PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching
- arxiv url: http://arxiv.org/abs/2404.01674v1
- Date: Tue, 2 Apr 2024 06:25:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:48:15.830518
- Title: PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching
- Title(参考訳): PRISM-TopoMap: 位置認識とスキャンマッチングを備えたオンライントポロジマッピング
- Authors: Kirill Muravyev, Alexander Melekhin, Dmitriy Yudin, Konstantin Yakovlev,
- Abstract要約: 本稿では,局所的な位置のグラフを保持するトポロジカルマッピング手法であるPRISM-TopoMapを紹介する。
提案手法は,ローカライゼーションとループ閉鎖のためのスキャンマッチングパイプラインと組み合わせた学習可能なマルチモーダル位置認識を含む。
提案手法の広範な実験的評価を,写真実写環境および実ロボット上で行った。
- 参考スコア(独自算出の注目度): 42.74395278382559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mapping is one of the crucial tasks enabling autonomous navigation of a mobile robot. Conventional mapping methods output dense geometric map representation, e.g. an occupancy grid, which is not trivial to keep consistent for the prolonged runs covering large environments. Meanwhile, capturing the topological structure of the workspace enables fast path planning, is less prone to odometry error accumulation and does not consume much memory. Following this idea, this paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations not relying on global metric coordinates. The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure in the graph of locations. The latter is updated online and the robot is localized in a proper node at each time step. We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot (wheeled differential driven Husky robot), and compare it to state of the art. The results of the empirical evaluation confirm that PRISM-Topomap consistently outperforms competitors across several measures of mapping and navigation efficiency and performs well on a real robot. The code of PRISM-Topomap is open-sourced and available at https://github.com/kirillMouraviev/prism-topomap.
- Abstract(参考訳): マッピングは、移動ロボットの自律的なナビゲーションを可能にする重要なタスクの1つだ。
従来のマッピング手法は、例えば占有格子のような密度の高い幾何学的地図表現を出力する。
一方、ワークスペースのトポロジ的構造をキャプチャすることで、高速な経路計画が可能となり、計測誤差の蓄積が少なくなり、メモリをあまり消費しない。
本稿では,グローバルな距離座標に依存しない局所的な位置のグラフを保持するトポロジカルマッピング手法であるPRISM-TopoMapを紹介する。
提案手法は,学習可能なマルチモーダル位置認識とスキャンマッチングパイプラインを組み合わせ,位置グラフの局所化とループ閉鎖を行う。
後者はオンラインで更新され、ロボットは各タイミングで適切なノードにローカライズされる。
提案手法を実物と実物(車輪付きディファレンシャル駆動型ハスキーロボット)で広範に実験的に評価し,最先端技術と比較した。
実験による評価の結果,PRISM-Topomap は地図作成とナビゲーションの効率性において競争相手より一貫して優れており,実際のロボットでは良好であることがわかった。
PRISM-Topomapのコードは、https://github.com/kirillMouraviev/prism-topomap.comで公開されている。
関連論文リスト
- NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot [1.0550841723235613]
トポロジマップと2段階の経路計画に基づく完全なナビゲーションパイプラインを提案する。
パイプラインは、入力ポイントクラウドのニューラルネットワーク記述子と2Dプロジェクションをマッチングすることで、グラフにローカライズする。
提案手法は,大規模な室内光相対論的シミュレーション環境でテストし,一般的な計量マッピング手法であるRTAB-MAPに基づく計量地図に基づく手法と比較する。
論文 参考訳(メタデータ) (2024-10-15T10:54:49Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Active Visual Localization for Multi-Agent Collaboration: A Data-Driven Approach [47.373245682678515]
本研究は、視点変化の課題を克服するために、アクティブな視覚的ローカライゼーションをどのように利用できるかを検討する。
具体的には、与えられた場所における最適な視点を選択する問題に焦点をあてる。
その結果,既存の手法と比較して,データ駆動方式の方が優れた性能を示した。
論文 参考訳(メタデータ) (2023-10-04T08:18:30Z) - Neural Implicit Dense Semantic SLAM [83.04331351572277]
本稿では,屋内シーンのメモリ効率,高密度な3次元形状,セマンティックセマンティックセグメンテーションをオンラインで学習する新しいRGBD vSLAMアルゴリズムを提案する。
私たちのパイプラインは、従来の3Dビジョンベースのトラッキングとループクローズとニューラルフィールドベースのマッピングを組み合わせたものです。
提案アルゴリズムはシーン認識を大幅に向上させ,様々なロボット制御問題を支援する。
論文 参考訳(メタデータ) (2023-04-27T23:03:52Z) - Region Prediction for Efficient Robot Localization on Large Maps [5.75614168271028]
そこで本研究では,位置認識のためのマップノードのサブセットを事前選択する手法を提案する。
領域ラベルはディープニューラルネットワークの予測対象となり、ナビゲーション中は、高い確率で予測される領域に関連するノードのみをマッチングとして考慮する。
論文 参考訳(メタデータ) (2023-03-01T07:42:48Z) - Lightweight Object-level Topological Semantic Mapping and Long-term
Global Localization based on Graph Matching [19.706907816202946]
本稿では,高精度でロバストなオブジェクトレベルのマッピングとローカライズ手法を提案する。
我々は、環境のランドマークをモデル化するために、意味情報と幾何学情報の両方を持つオブジェクトレベルの特徴を使用する。
提案したマップに基づいて,新たな局所的シーングラフ記述子を構築することにより,ロバストなローカライゼーションを実現する。
論文 参考訳(メタデータ) (2022-01-16T05:47:07Z) - Average Outward Flux Skeletons for Environment Mapping and Topology
Matching [15.93458380913065]
本研究では,初期未知の2次元環境の道路マップの抽出方法を,その境界線を頑健に計算するオンライン・プロシージャを用いて検討する。
提案アルゴリズムは,ロボットのナビゲーションニーズに対して,スムーズな経路を実現する。
論文 参考訳(メタデータ) (2021-11-27T06:29:57Z) - Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic
Simultaneous Localization and Mapping [57.173793973480656]
本稿では,高密度メカニカル・セマンティックSLAMのための完全分散マルチロボットシステムを提案する。
私たちのシステムはKimera-Multiと呼ばれ、視覚慣性センサーを備えたロボットチームによって実装されています。
Kimera-Multiは環境の3Dメッシュモデルをリアルタイムで構築し、メッシュの各面にセマンティックラベルをアノテートする。
論文 参考訳(メタデータ) (2020-11-08T21:38:12Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
以前にマップされた位置を認識する能力は、自律システムにとって不可欠な機能である。
非構造的な惑星のような環境は、地形の類似性のためにこれらのシステムに大きな課題をもたらす。
本稿では,空間情報のみを用いたループ閉鎖問題の解法を提案する。
論文 参考訳(メタデータ) (2020-09-01T04:41:40Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
本研究は, カテゴリーラベルのみを監督として, 正確な対象位置分布マップと対象境界を抽出する, 新たな自己強調手法を提案する。
特に、提案されたセルフエンハンスメントマップは、ILSVRC上で54.88%の最先端のローカライゼーション精度を達成する。
論文 参考訳(メタデータ) (2020-06-09T12:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。