RefQSR: Reference-based Quantization for Image Super-Resolution Networks
- URL: http://arxiv.org/abs/2404.01690v1
- Date: Tue, 2 Apr 2024 06:49:38 GMT
- Title: RefQSR: Reference-based Quantization for Image Super-Resolution Networks
- Authors: Hongjae Lee, Jun-Sang Yoo, Seung-Won Jung,
- Abstract summary: Single image super-resolution aims to reconstruct a high-resolution image from its low-resolution observation.
Deep learning-based SISR models show high performance at the expense of increased computational costs.
We introduce a novel method called RefQSR that applies high-bit quantization to several representative patches and uses them as references for low-bit quantization of the rest of the patches in an image.
- Score: 14.428652358882978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single image super-resolution (SISR) aims to reconstruct a high-resolution image from its low-resolution observation. Recent deep learning-based SISR models show high performance at the expense of increased computational costs, limiting their use in resource-constrained environments. As a promising solution for computationally efficient network design, network quantization has been extensively studied. However, existing quantization methods developed for SISR have yet to effectively exploit image self-similarity, which is a new direction for exploration in this study. We introduce a novel method called reference-based quantization for image super-resolution (RefQSR) that applies high-bit quantization to several representative patches and uses them as references for low-bit quantization of the rest of the patches in an image. To this end, we design dedicated patch clustering and reference-based quantization modules and integrate them into existing SISR network quantization methods. The experimental results demonstrate the effectiveness of RefQSR on various SISR networks and quantization methods.
Related papers
- PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [87.89013794655207]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.
We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.
Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - RepQ: Generalizing Quantization-Aware Training for Re-Parametrized
Architectures [3.797846371838652]
We propose a novel approach called RepQ, which applies quantization to re-parametrized networks.
Our method is based on the insight that the test stage weights of an arbitrary re-parametrized layer can be presented as a differentiable function of trainable parameters.
RepQ generalizes well to various re-parametrized models and outperforms the baseline method LSQ quantization scheme in all experiments.
arXiv Detail & Related papers (2023-11-09T12:25:39Z) - CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution [55.50793823060282]
We propose a novel Content-Aware Dynamic Quantization (CADyQ) method for image super-resolution (SR) networks.
CADyQ allocates optimal bits to local regions and layers adaptively based on the local contents of an input image.
The pipeline has been tested on various SR networks and evaluated on several standard benchmarks.
arXiv Detail & Related papers (2022-07-21T07:50:50Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
We propose the MASA network for RefSR, where two novel modules are designed to address these problems.
The proposed Match & Extraction Module significantly reduces the computational cost by a coarse-to-fine correspondence matching scheme.
The Spatial Adaptation Module learns the difference of distribution between the LR and Ref images, and remaps the distribution of Ref features to that of LR features in a spatially adaptive way.
arXiv Detail & Related papers (2021-06-04T07:15:32Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Sub-Pixel Back-Projection Network For Lightweight Single Image
Super-Resolution [17.751425965791718]
We study reducing the number of parameters and computational cost of CNN-based SISR methods.
We introduce a novel network architecture for SISR, which strikes a good trade-off between reconstruction quality and low computational complexity.
arXiv Detail & Related papers (2020-08-03T18:15:16Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.