論文の概要: Efficient Online Unlearning via Hessian-Free Recollection of Individual Data Statistics
- arxiv url: http://arxiv.org/abs/2404.01712v2
- Date: Thu, 11 Apr 2024 11:42:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 18:06:21.947402
- Title: Efficient Online Unlearning via Hessian-Free Recollection of Individual Data Statistics
- Title(参考訳): Hessian-free Recollection of individual data Statistics によるオンライン学習の効率化
- Authors: Xinbao Qiao, Meng Zhang, Ming Tang, Ermin Wei,
- Abstract要約: 機械学習は、特定のデータを選択的に忘れることを可能にして、データ所有者の権利を忘れないように努力する。
近年の手法では,2次情報を含む統計データを事前計算し,保存する手法が提案されている。
ほぼ瞬時に学習できるヘッセン自由オンラインアンラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 8.875278412741695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data. Recent methods suggest that one approach of data forgetting is by precomputing and storing statistics carrying second-order information to improve computational and memory efficiency. However, they rely on restrictive assumptions and the computation/storage suffer from the curse of model parameter dimensionality, making it challenging to apply to most deep neural networks. In this work, we propose a Hessian-free online unlearning method. We propose to maintain a statistical vector for each data point, computed through affine stochastic recursion approximation of the difference between retrained and learned models. Our proposed algorithm achieves near-instantaneous online unlearning as it only requires a vector addition operation. Based on the strategy that recollecting statistics for forgetting data, the proposed method significantly reduces the unlearning runtime. Experimental studies demonstrate that the proposed scheme surpasses existing results by orders of magnitude in terms of time and memory costs, while also enhancing accuracy.
- Abstract(参考訳): 機械学習は、特定のデータを選択的に忘れることを可能にして、データ所有者の権利を忘れないように努力する。
近年の手法では,2次情報を含む統計データを事前計算・保存することで,計算効率とメモリ効率を向上させる方法が提案されている。
しかし、それらは制限的な仮定に依存しており、計算/記憶はモデルパラメータの次元性の呪いに苦しむため、ほとんどのディープニューラルネットワークに適用することは困難である。
本研究では,Hessian-free online unlearning法を提案する。
本稿では,再学習モデルと学習モデルの違いの確率的再帰近似を用いて計算した各データ点に対する統計的ベクトルを維持することを提案する。
提案アルゴリズムは,ベクトル加算操作のみを必要とするため,ほぼ瞬時にオンラインアンラーニングを実現する。
データを忘れる統計を再現する戦略に基づいて,提案手法は未学習のランタイムを大幅に削減する。
実験により,提案手法は時間とメモリコストの面で,既存の結果を桁違いに上回り,精度も向上することを示した。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions [11.955062839855334]
機械学習アルゴリズムは、データのプライバシを強制したり、腐敗または時代遅れのデータを削除したり、ユーザの忘れる権利を尊重するために、スクラッチからモデルから効率的にデータを取得することを目的としています。
我々のアルゴリズムはブラックボックスであり、未学習の事前考慮なしに、バニラ勾配勾配のモデルに直接適用できる。
論文 参考訳(メタデータ) (2024-09-15T15:58:08Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Regression-based projection for learning Mori-Zwanzig operators [0.0]
本稿では,フォレスト・ズワンジッヒ形式論における演算子のデータ駆動学習を可能にするために,統計的回帰を射影演算子として採用することを提案する。
本稿では,森プロジェクション演算子に基づく最近提案されたデータ駆動学習アルゴリズムにおける線形回帰結果の選択について述べる。
論文 参考訳(メタデータ) (2022-05-10T19:35:47Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
類似度選択の基数推定にディープラーニングを活用する可能性について検討する。
本稿では,任意のデータ型や距離関数に適用可能な,新規で汎用的な手法を提案する。
論文 参考訳(メタデータ) (2020-02-15T20:22:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。