Atom-Level Optical Chemical Structure Recognition with Limited Supervision
- URL: http://arxiv.org/abs/2404.01743v1
- Date: Tue, 2 Apr 2024 09:01:21 GMT
- Title: Atom-Level Optical Chemical Structure Recognition with Limited Supervision
- Authors: Martijn Oldenhof, Edward De Brouwer, Adam Arany, Yves Moreau,
- Abstract summary: We propose a new chemical structure recognition tool that delivers state-of-the-art performance.
Unlike previous approaches, our method provides atom-level localization.
Our model is the first model to perform OCSR with atom-level entity detection with only SMILES supervision.
- Score: 14.487346160322653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the chemical structure from a graphical representation, or image, of a molecule is a challenging pattern recognition task that would greatly benefit drug development. Yet, existing methods for chemical structure recognition do not typically generalize well, and show diminished effectiveness when confronted with domains where data is sparse, or costly to generate, such as hand-drawn molecule images. To address this limitation, we propose a new chemical structure recognition tool that delivers state-of-the-art performance and can adapt to new domains with a limited number of data samples and supervision. Unlike previous approaches, our method provides atom-level localization, and can therefore segment the image into the different atoms and bonds. Our model is the first model to perform OCSR with atom-level entity detection with only SMILES supervision. Through rigorous and extensive benchmarking, we demonstrate the preeminence of our chemical structure recognition approach in terms of data efficiency, accuracy, and atom-level entity prediction.
Related papers
- SubGrapher: Visual Fingerprinting of Chemical Structures [46.677062201188015]
SubGrapher is a method for the visual fingerprinting of chemical structure images.
Unlike conventional Optical Chemical Structure Recognition (OCSR) models that attempt to reconstruct full molecular graphs, SubGrapher focuses on extracting molecular fingerprints directly from chemical structure images.
Our approach is evaluated against state-of-the-art OCSR and fingerprinting methods, demonstrating superior retrieval performance and robustness across diverse molecular depictions.
arXiv Detail & Related papers (2025-04-28T11:45:46Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - SMiCRM: A Benchmark Dataset of Mechanistic Molecular Images [0.8192907805418583]
We present a dataset designed to benchmark machine recognition capabilities of chemical molecules with arrow-pushing annotations.
This dataset includes a machine-readable molecular identity for each image as well as mechanistic arrows showing electron flow during chemical reactions.
arXiv Detail & Related papers (2024-07-25T18:52:10Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability [0.0]
The integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge.
We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family.
We implemented the Hierarchical Grad-CAM graph Explainer framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization.
arXiv Detail & Related papers (2024-01-29T17:23:25Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
We introduce MolGrapher to recognize chemical structures visually.
We treat all candidate atoms and bonds as nodes and put them in a graph.
We classify atom and bond nodes in the graph with a Graph Neural Network.
arXiv Detail & Related papers (2023-08-23T16:16:11Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Automatic Identification of Chemical Moieties [11.50343898633327]
We introduce a method to automatically identify chemical moieties from atomic representations using message-passing neural networks.
The versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases.
arXiv Detail & Related papers (2022-03-30T10:58:23Z) - Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships [4.468952886990851]
We propose to train graph-to-graph neural network using semi-supervised learning for attributing structure-property relationships.
As final goal, our approach could represent a valuable tool to deal with problems such as activity cliffs, lead optimization and de-novo drug design.
arXiv Detail & Related papers (2022-01-25T09:09:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.