Automatic Identification of Chemical Moieties
- URL: http://arxiv.org/abs/2203.16205v2
- Date: Thu, 27 Apr 2023 10:59:56 GMT
- Title: Automatic Identification of Chemical Moieties
- Authors: Jonas Lederer, Michael Gastegger, Kristof T. Sch\"utt, Michael
Kampffmeyer, Klaus-Robert M\"uller, Oliver T. Unke
- Abstract summary: We introduce a method to automatically identify chemical moieties from atomic representations using message-passing neural networks.
The versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases.
- Score: 11.50343898633327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the prediction of quantum mechanical observables with
machine learning methods has become increasingly popular. Message-passing
neural networks (MPNNs) solve this task by constructing atomic representations,
from which the properties of interest are predicted. Here, we introduce a
method to automatically identify chemical moieties (molecular building blocks)
from such representations, enabling a variety of applications beyond property
prediction, which otherwise rely on expert knowledge. The required
representation can either be provided by a pretrained MPNN, or learned from
scratch using only structural information. Beyond the data-driven design of
molecular fingerprints, the versatility of our approach is demonstrated by
enabling the selection of representative entries in chemical databases, the
automatic construction of coarse-grained force fields, as well as the
identification of reaction coordinates.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Universal neural network potentials as descriptors: Towards scalable chemical property prediction using quantum and classical computers [0.0]
We present a versatile approach that uses the intermediate information of a universal neural network potential as a general-purpose descriptor for chemical property prediction.
We show that transfer learning with graph neural network potentials such as M3GNet and MACE achieves accuracy comparable to state-of-the-art methods for predicting the NMR chemical shifts.
arXiv Detail & Related papers (2024-02-28T15:57:22Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
We introduce a novel approach for the active learning over the chemical spaces based on hypothesis learning.
We construct the hypotheses on the possible relationships between structures and functionalities of interest based on a small subset of data.
This approach combines the elements from the symbolic regression methods such as SISSO and active learning into a single framework.
arXiv Detail & Related papers (2023-01-06T14:22:43Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Improving VAE based molecular representations for compound property
prediction [0.0]
We propose a simple method to improve chemical property prediction performance of machine learning models.
We show the relation between the performance of property prediction models and the distance between property prediction dataset and the larger unlabeled dataset.
arXiv Detail & Related papers (2022-01-13T12:57:11Z) - Geometric Transformer for End-to-End Molecule Properties Prediction [92.28929858529679]
We introduce a Transformer-based architecture for molecule property prediction, which is able to capture the geometry of the molecule.
We modify the classical positional encoder by an initial encoding of the molecule geometry, as well as a learned gated self-attention mechanism.
arXiv Detail & Related papers (2021-10-26T14:14:40Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Graph Neural Network Architecture Search for Molecular Property
Prediction [1.0965065178451106]
We develop an NAS approach to automate the design and development of graph neural networks (GNNs) for molecular property prediction.
Specifically, we focus on automated development of message-passing neural networks (MPNNs) to predict the molecular properties of small molecules in quantum mechanics and physical chemistry data sets.
arXiv Detail & Related papers (2020-08-27T15:30:57Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.