Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships
- URL: http://arxiv.org/abs/2202.05704v1
- Date: Tue, 25 Jan 2022 09:09:43 GMT
- Title: Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships
- Authors: Alessio Ragno, Dylan Savoia, Roberto Capobianco
- Abstract summary: We propose to train graph-to-graph neural network using semi-supervised learning for attributing structure-property relationships.
As final goal, our approach could represent a valuable tool to deal with problems such as activity cliffs, lead optimization and de-novo drug design.
- Score: 4.468952886990851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the introduction of artificial intelligence in medicinal chemistry, the
necessity has emerged to analyse how molecular property variation is modulated
by either single atoms or chemical groups. In this paper, we propose to train
graph-to-graph neural network using semi-supervised learning for attributing
structure-property relationships. As initial case studies we apply the method
to solubility and molecular acidity while checking its consistency in
comparison with known experimental chemical data. As final goal, our approach
could represent a valuable tool to deal with problems such as activity cliffs,
lead optimization and de-novo drug design.
Related papers
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
This paper introduces a novel pre-training framework that learns robust and generalizable chemical knowledge.
Our approach demonstrates competitive performance across various molecular property benchmarks.
arXiv Detail & Related papers (2023-11-05T23:47:52Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
We introduce various methods to detect and cluster chemical compounds based on their SMILES data.
Our first method, analyzing the graphical structures of chemical compounds using embedding data, employs vector search to meet our threshold value.
We also used natural language description embeddings stored in a vector database with GPT3.5, which outperforms the base model.
arXiv Detail & Related papers (2023-10-25T18:00:24Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - BERT Learns (and Teaches) Chemistry [5.653789128055942]
We propose the use of attention to study functional groups and other property-impacting molecular substructures from a data-driven perspective.
We then apply the representations of functional groups and atoms learned by the model to tackle problems of toxicity, solubility, drug-likeness, and accessibility.
arXiv Detail & Related papers (2020-07-11T00:23:07Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.