論文の概要: GEARS: Local Geometry-aware Hand-object Interaction Synthesis
- arxiv url: http://arxiv.org/abs/2404.01758v3
- Date: Sat, 11 May 2024 19:55:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 23:44:37.772984
- Title: GEARS: Local Geometry-aware Hand-object Interaction Synthesis
- Title(参考訳): GEARS:局所幾何学的手・物体間相互作用合成
- Authors: Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, Gerard Pons-moll,
- Abstract要約: 本研究では, 相互作用領域近傍の局所物体形状を推定するための, 結合中心型センサを提案する。
学習の複雑さを軽減するための重要なステップとして、グローバルフレームからテンプレートハンドフレームにポイントを変換し、共有モジュールを使用して各関節のセンサ特徴を処理する。
これに続いて、異なる次元の関節間の相関を捉えることを目的とした知覚時間変換ネットワークが提供される。
- 参考スコア(独自算出の注目度): 38.75942505771009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic hand motion sequences in interaction with objects has gained increasing attention with the growing interest in digital humans. Prior work has illustrated the effectiveness of employing occupancy-based or distance-based virtual sensors to extract hand-object interaction features. Nonetheless, these methods show limited generalizability across object categories, shapes and sizes. We hypothesize that this is due to two reasons: 1) the limited expressiveness of employed virtual sensors, and 2) scarcity of available training data. To tackle this challenge, we introduce a novel joint-centered sensor designed to reason about local object geometry near potential interaction regions. The sensor queries for object surface points in the neighbourhood of each hand joint. As an important step towards mitigating the learning complexity, we transform the points from global frame to hand template frame and use a shared module to process sensor features of each individual joint. This is followed by a spatio-temporal transformer network aimed at capturing correlation among the joints in different dimensions. Moreover, we devise simple heuristic rules to augment the limited training sequences with vast static hand grasping samples. This leads to a broader spectrum of grasping types observed during training, in turn enhancing our model's generalization capability. We evaluate on two public datasets, GRAB and InterCap, where our method shows superiority over baselines both quantitatively and perceptually.
- Abstract(参考訳): 物体との相互作用における現実的な手の動き列の生成は、デジタル人間への関心の高まりとともに注目を集めている。
以前の研究は、手動物体の相互作用の特徴を抽出するために、占有率に基づくまたは距離に基づく仮想センサを使うことの有効性を実証してきた。
にもかかわらず、これらの手法は対象圏、形状、大きさにまたがる限定的な一般化性を示す。
これは2つの理由によるものと仮定する。
1)使用済み仮想センサの限られた表現性、及び
2) 利用可能なトレーニングデータの不足。
この課題に対処するために、我々は、潜在的な相互作用領域近傍の局所物体形状を推論する新しい共同中心センサを導入する。
各手関節近傍の物体表面点に対するセンサクエリ
学習の複雑さを軽減するための重要なステップとして、グローバルフレームからハンドテンプレートフレームへポイントを変換し、共有モジュールを使用して各関節のセンサ特徴を処理する。
その後、異なる次元の関節間の相関を捉えることを目的とした時空間変圧器ネットワークが続く。
さらに,手幅の広い静的握りサンプルを用いて,限られたトレーニングシーケンスを増強するための単純なヒューリスティックなルールを考案した。
これにより、トレーニング中に観察される把握タイプの幅広いスペクトルが導かれ、それによってモデルの一般化能力が向上する。
GRABとInterCapの2つの公開データセットについて評価し,本手法はベースラインよりも定量的かつ知覚的に優れていることを示す。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:59:56Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
既存の方法は相互作用する物体を見つけるためにフレームベースの検出器に依存している。
本稿では,対話オブジェクトの追跡に手動オブジェクトのインタラクションを活用することを提案する。
提案手法は最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-08-06T09:09:17Z) - Effective Actor-centric Human-object Interaction Detection [20.564689533862524]
画像中の人間と物体の相互作用を検出する新しいアクター中心のフレームワークを提案する。
提案手法は,挑戦的なV-COCOとHICO-DETベンチマークの最先端化を実現する。
論文 参考訳(メタデータ) (2022-02-24T10:24:44Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。