Diagonal Coset Approach to Topological Quantum Computation with Fibonacci Anyons
- URL: http://arxiv.org/abs/2404.01779v2
- Date: Wed, 3 Apr 2024 08:27:23 GMT
- Title: Diagonal Coset Approach to Topological Quantum Computation with Fibonacci Anyons
- Authors: Lachezar S. Georgiev, Ludmil Hadjiivanov, Grigori Matein,
- Abstract summary: We investigate a promising conformal field theory realization scheme for topological quantum computation based on the Fibonacci anyons.
The quantum gates are realized by braiding of these anyons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate a promising conformal field theory realization scheme for topological quantum computation based on the Fibonacci anyons, which are believed to be realized as quasiparticle excitations in the $\mathbb{Z}_3$ parafermion fractional quantum Hall state in the second Landau level with filling factor $\nu=12/5$. These anyons are non-Abelian and are known to be capable of universal topological quantum computation. The quantum information is encoded in the fusion channels of pairs of such non-Abelian anyons and is protected from noise and decoherence by the topological properties of these systems.The quantum gates are realized by braiding of these anyons. We propose here an implementation of the $n$-qubit topological quantum register in terms of $2n+2$ Fibonacci anyons. The matrices emerging from the anyon exchanges, i.e. the generators of the braid group for one qubit are derived from the coordinate wave functions of a large number of electron holes and 4 Fibonacci anyons which can furthermore be represented as correlation functions in $\mathbb{Z}_3$ parafermionic two-dimensional conformal field theory. The representations of the braid groups for more than 4 anyons are obtained by fusing pairs of anyons before braiding, thus reducing eventually the system to 4 anyons.
Related papers
- Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Non-Abelian braiding of Fibonacci anyons with a superconducting processor [15.68967425584753]
We report the realization of non-Abelian topologically ordered states of the Fibonacci string-net model.
We demonstrate braidings of Fibonacci anyons featuring universal computational power.
Our results establish a versatile digital approach to exploring exotic non-Abelian topological states.
arXiv Detail & Related papers (2024-03-29T18:00:01Z) - Dyck Paths and Topological Quantum Computation [1.3958149444453791]
We show a mapping between the fusion basis of three Fibonacci anyons, $|1rangle, |taurangle$, and the two length 4 Dyck paths.
We also show braidwords in this rotated space that efficiently enable the execution of any desired single-qubit operation.
arXiv Detail & Related papers (2023-06-28T09:52:08Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Topological Quantum Computation on Supersymmetric Spin Chains [0.0]
Quantum gates built out of braid group elements form the building blocks of topological quantum computation.
We show that the fusion spaces of anyonic systems can be precisely mapped to the product state zero modes of certain Nicolai-like supersymmetric spin chains.
arXiv Detail & Related papers (2022-09-08T13:52:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Compiling single-qubit braiding gate for Fibonacci anyons topological
quantum computation [0.0]
Topological quantum computation is an implementation of a quantum computer in a way that radically reduces decoherence.
Topological qubits are encoded in the topological evolution of two-dimensional quasi-particles called anyons.
arXiv Detail & Related papers (2020-08-08T15:34:03Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Hartree-Fock on a superconducting qubit quantum computer [30.152226344347064]
Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates.
We model the binding energy of $rm H_6$, $rm H_8$, $rm H_10$ and $rm H_12$ chains as well as the isomerization of diazene.
We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments.
arXiv Detail & Related papers (2020-04-08T18:00:06Z) - Universal topological quantum computation with strongly correlated
Majorana edge modes [7.930410828384357]
Majorana-based quantum gates are not complete for performing universal topological quantum computation.
We show the application to Shor's integer factorization algorithm.
arXiv Detail & Related papers (2020-04-07T12:03:14Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.