Topological Quantum Computation on Supersymmetric Spin Chains
- URL: http://arxiv.org/abs/2209.03822v1
- Date: Thu, 8 Sep 2022 13:52:10 GMT
- Title: Topological Quantum Computation on Supersymmetric Spin Chains
- Authors: Indrajit Jana, Filippo Montorsi, Pramod Padmanabhan and Diego
Trancanelli
- Abstract summary: Quantum gates built out of braid group elements form the building blocks of topological quantum computation.
We show that the fusion spaces of anyonic systems can be precisely mapped to the product state zero modes of certain Nicolai-like supersymmetric spin chains.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum gates built out of braid group elements form the building blocks of
topological quantum computation. They have been extensively studied in
$SU(2)_k$ quantum group theories, a rich source of examples of non-Abelian
anyons such as the Ising ($k=2$), Fibonacci ($k=3$) and Jones-Kauffman ($k=4$)
anyons. We show that the fusion spaces of these anyonic systems can be
precisely mapped to the product state zero modes of certain Nicolai-like
supersymmetric spin chains. As a result, we can realize the braid group on the
product state zero modes of these supersymmetric systems. These operators kill
all the other states in the Hilbert space, thus preventing the occurrence of
errors while processing information, making them suitable for quantum
computing.
Related papers
- Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Demonstrating anyonic non-Abelian statistics with a minimal $d = 6$ qudit lattice [0.0]
We consider a lattice of $d=6$ qudits that give rise to $mathbfD(mathbfS_3)$ non-Abelian anyons.
We present a method that demonstrates the non-commutativity of the braiding and fusion evolutions.
This work represents a foundational step towards the realisation of non-Abelian quantum error-correcting codes.
arXiv Detail & Related papers (2024-08-06T18:00:59Z) - Quantum Spin Chains and Symmetric Functions [1.7802147489386628]
We consider the question of what quantum spin chains naturally encode in their Hilbert space.
quantum spin chains are examples of "quantum integrable systems"
arXiv Detail & Related papers (2024-04-05T18:00:02Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Diagonal Coset Approach to Topological Quantum Computation with Fibonacci Anyons [0.0]
We investigate a promising conformal field theory realization scheme for topological quantum computation based on the Fibonacci anyons.
The quantum gates are realized by braiding of these anyons.
arXiv Detail & Related papers (2024-04-02T09:44:02Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Ternary Logic Design in Topological Quantum Computing [3.0079490585515343]
A quantum computer can perform exponentially faster than its classical counterpart.
The superposition of a quantum state gets destroyed by the interaction with the environment.
The fault-tolerance is achieved through the topological degrees of freedom of anyons.
arXiv Detail & Related papers (2022-04-03T05:35:59Z) - Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze [13.651587339535961]
We develop a framework for convolutional quantum circuits with SU$(d)$symmetry.
We prove Harrow's statement on equivalence between $nameSU(d)$ and $S_n$ irrep bases.
arXiv Detail & Related papers (2021-12-14T18:03:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.