論文の概要: Sentiment Analysis of Citations in Scientific Articles Using ChatGPT: Identifying Potential Biases and Conflicts of Interest
- arxiv url: http://arxiv.org/abs/2404.01800v1
- Date: Tue, 2 Apr 2024 09:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:59:04.432483
- Title: Sentiment Analysis of Citations in Scientific Articles Using ChatGPT: Identifying Potential Biases and Conflicts of Interest
- Title(参考訳): ChatGPTを用いた科学論文の調味料の感性分析:可能性バイアスと利害対立の同定
- Authors: Walid Hariri,
- Abstract要約: 本稿では,大規模言語モデル,特にChatGPTの科学的論文における引用の包括的感情分析における革新的利用について紹介する。
ChatGPTは引用のニュアンスな肯定性や否定性を識別することができ、引用された作品の受信と影響に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 4.13365552362244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific articles play a crucial role in advancing knowledge and informing research directions. One key aspect of evaluating scientific articles is the analysis of citations, which provides insights into the impact and reception of the cited works. This article introduces the innovative use of large language models, particularly ChatGPT, for comprehensive sentiment analysis of citations within scientific articles. By leveraging advanced natural language processing (NLP) techniques, ChatGPT can discern the nuanced positivity or negativity of citations, offering insights into the reception and impact of cited works. Furthermore, ChatGPT's capabilities extend to detecting potential biases and conflicts of interest in citations, enhancing the objectivity and reliability of scientific literature evaluation. This study showcases the transformative potential of artificial intelligence (AI)-powered tools in enhancing citation analysis and promoting integrity in scholarly research.
- Abstract(参考訳): 科学論文は、知識を推進し、研究の方向性を伝える上で重要な役割を担っている。
科学的記事を評価する上で重要な側面は引用の分析であり、引用された作品の影響と受容についての洞察を提供する。
本稿では,大規模言語モデル,特にChatGPTの科学的論文における引用の包括的感情分析における革新的利用について紹介する。
高度な自然言語処理(NLP)技術を活用することで、ChatGPTは引用のニュアンスな肯定性や否定性を識別し、引用された作品の受信と影響に関する洞察を提供する。
さらに、ChatGPTの能力は、引用に対する潜在的なバイアスや関心の対立を検出し、科学的文献評価の客観性と信頼性を高める。
本研究は,学術研究における引用分析の強化と整合性向上における人工知能(AI)を活用したツールの変容の可能性を示す。
関連論文リスト
- Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Automatic Analysis of Linguistic Features in Journal Articles of
Different Academic Impacts with Feature Engineering Techniques [0.975434908987426]
本研究では, 特徴工学的手法を用いて, 高次・中等度な学術誌RAのマイクロレベル言語的特徴の抽出を試みた。
英文記事のコーパスから特徴選択手法を用いて,25の高関連特徴を抽出した。
その結果, 隣接文間の内容語重複, 第三者代名詞の使用, 助動詞, 時制, 感情語など24種類の言語的特徴が, 学術的影響の異なる雑誌記事に対して一貫した, 正確な予測を提供することがわかった。
論文 参考訳(メタデータ) (2021-11-15T03:56:50Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Semantic Analysis for Automated Evaluation of the Potential Impact of
Research Articles [62.997667081978825]
本稿では,情報理論に基づくテキスト意味のベクトル表現のための新しい手法を提案する。
この情報意味論がLeicester Scientific Corpusに基づいてテキスト分類にどのように使用されるかを示す。
テキストの意味を表現するための情報的アプローチは,研究論文の科学的影響を効果的に予測する方法であることを示す。
論文 参考訳(メタデータ) (2021-04-26T20:37:13Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - A Decade of In-text Citation Analysis based on Natural Language
Processing and Machine Learning Techniques: An overview of empirical studies [3.474275085556876]
情報科学者は、フルテキストデータ処理技術の進歩に踏み込んで、従来の書誌学をはるかに超えてきた。
本稿は、これらの発展に関する研究を物語的にレビューすることを目的としている。
その主な焦点は、自然言語処理と機械学習技術を使って引用を分析した出版物である。
論文 参考訳(メタデータ) (2020-08-29T17:27:08Z) - ImpactCite: An XLNet-based method for Citation Impact Analysis [4.526582372434088]
インパクト分析により、引用の質を定量化できます。
XLNetベースのソリューションであるImpactCiteは、引用意図と感情分類の両方に対して、最先端のパフォーマンスを実現する。
CSC-Clean corpusは引用感情分類のためのクリーンで信頼性の高いデータセットである。
論文 参考訳(メタデータ) (2020-05-05T08:31:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。