論文の概要: A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- arxiv url: http://arxiv.org/abs/2402.12928v4
- Date: Sun, 24 Mar 2024 10:06:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 01:25:46.001586
- Title: A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- Title(参考訳): パターン分析とマシンインテリジェンスにおける文献レビュー
- Authors: Penghai Zhao, Xin Zhang, Ming-Ming Cheng, Jian Yang, Xiang Li,
- Abstract要約: 本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
- 参考スコア(独自算出の注目度): 58.6354685593418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By consolidating scattered knowledge, the literature review provides a comprehensive understanding of the investigated topic. However, reading, conducting, or peer-reviewing review papers generally demands a significant investment of time and effort from researchers. To improve efficiency, this paper aims to provide a thorough review of reviews in the PAMI field from diverse perspectives. First, this paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews. To facilitate this, a meta-data database dubbed RiPAMI, and a topic dataset are constructed. Second, based on these indicators, the study presents comparative analyses of representative reviews, unveiling the characteristics of publications across various fields, periods, and journals. The newly emerging AI-generated literature reviews are also appraised, and the observed differences suggest that most AI-generated reviews still lag behind human-authored reviews in multiple aspects. Third, we briefly provide a subjective evaluation of representative PAMI reviews and introduce a paper structure-based typology of literature reviews. This typology may improve the clarity and effectiveness for scholars in reading and writing reviews, while also serving as a guide for AI systems in generating well-organized reviews. Finally, this work offers insights into the current challenges of literature reviews and envisions future directions for their development.
- Abstract(参考訳): 散在する知識を集約することにより、文献レビューは、調査対象の総合的な理解を提供する。
しかし、読むこと、実行すること、または査読するレビュー論文は一般に研究者による時間と労力のかなりの投資を必要としている。
本稿では,PAMI分野のレビューを多種多様な視点から徹底的にレビューすることを目的としている。
まず、レビューを評価するために、いくつかの記事レベル、フィールド正規化、および大規模言語モデルを用いた書誌指標を提案する。
これを容易にするために、RiPAMIと呼ばれるメタデータデータベースとトピックデータセットを構築する。
第2に、これらの指標に基づいて、各分野、期間、雑誌の出版物の特徴を明らかにする代表レビューの比較分析を行った。
新たなAI生成の文献レビューも評価されており、観察された違いは、ほとんどのAI生成のレビューが、複数の面で人間によるレビューより遅れていることを示唆している。
第3に,PAMI書評を主観的に評価し,文献書評の類型論を紹介する。
このタイポロジーは、レビューの読み書きにおける学者の明快さと有効性を改善しつつ、十分に整理されたレビューを生成するためのAIシステムのガイドとしても機能する。
最後に、この研究は、文献レビューの現在の課題についての洞察を提供し、彼らの開発のための将来の方向性を想定する。
関連論文リスト
- LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - CASIMIR: A Corpus of Scientific Articles enhanced with Multiple Author-Integrated Revisions [7.503795054002406]
本稿では,学術論文の執筆過程の改訂段階について,原文資料を提案する。
この新しいデータセットはCASIMIRと呼ばれ、OpenReviewの15,646の科学論文の改訂版とピアレビューを含んでいる。
論文 参考訳(メタデータ) (2024-03-01T03:07:32Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
本稿では,論文レビューをメタレビューに合成する,科学的意見要約の課題を提案する。
ORSUMデータセットは、47のカンファレンスから15,062のメタレビューと57,536の論文レビューをカバーしている。
実験の結果,(1)人間による要約は,議論の深みや特定の領域に対するコンセンサスや論争の特定など,必要な基準をすべて満たしていないこと,(2)タスクの分解と反復的自己調整の組み合わせは,意見の強化に強い可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-24T02:33:35Z) - Hierarchical Catalogue Generation for Literature Review: A Benchmark [36.22298354302282]
本稿では,7.6kの文献レビューカタログと389kの参考論文を収録した,新しい英語階層カタログ・オブ・文学レビューデータセットを構築した。
モデルの性能を正確に評価するために,2つの評価指標を設計する。
論文 参考訳(メタデータ) (2023-04-07T07:13:35Z) - Artificial intelligence technologies to support research assessment: A
review [10.203602318836444]
この文献レビューは、記事のテキストから、より高いインパクトやより高い品質の研究に関連する指標を特定する。
論文やカンファレンス論文の引用数や品質スコアを予測するために機械学習技術を使用した研究が含まれている。
論文 参考訳(メタデータ) (2022-12-11T06:58:39Z) - NLPeer: A Unified Resource for the Computational Study of Peer Review [58.71736531356398]
NLPeer - 5万以上の論文と5つの異なる会場からの1万1千件のレビューレポートからなる、初めて倫理的にソースされたマルチドメインコーパス。
従来のピアレビューデータセットを拡張し、解析および構造化された論文表現、豊富なメタデータ、バージョニング情報を含む。
我々の研究は、NLPなどにおけるピアレビューの体系的、多面的、エビデンスに基づく研究への道のりをたどっている。
論文 参考訳(メタデータ) (2022-11-12T12:29:38Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。