論文の概要: Procedural Fairness in Machine Learning
- arxiv url: http://arxiv.org/abs/2404.01877v1
- Date: Tue, 2 Apr 2024 12:05:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:38:36.499358
- Title: Procedural Fairness in Machine Learning
- Title(参考訳): 機械学習における手続き的公正性
- Authors: Ziming Wang, Changwu Huang, Xin Yao,
- Abstract要約: まず、MLモデルの手続き的公正性を定義し、その後、個人的およびグループ的手続き的公正性の形式的定義を与える。
本稿では,GPF_FAE$と呼ばれるMLモデルの群手続き的公正性を評価するための新しい指標を提案する。
- 参考スコア(独自算出の注目度): 8.034966749391902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness in machine learning (ML) has received much attention. However, existing studies have mainly focused on the distributive fairness of ML models. The other dimension of fairness, i.e., procedural fairness, has been neglected. In this paper, we first define the procedural fairness of ML models, and then give formal definitions of individual and group procedural fairness. We propose a novel metric to evaluate the group procedural fairness of ML models, called $GPF_{FAE}$, which utilizes a widely used explainable artificial intelligence technique, namely feature attribution explanation (FAE), to capture the decision process of the ML models. We validate the effectiveness of $GPF_{FAE}$ on a synthetic dataset and eight real-world datasets. Our experiments reveal the relationship between procedural and distributive fairness of the ML model. Based on our analysis, we propose a method for identifying the features that lead to the procedural unfairness of the model and propose two methods to improve procedural fairness after identifying unfair features. Our experimental results demonstrate that we can accurately identify the features that lead to procedural unfairness in the ML model, and both of our proposed methods can significantly improve procedural fairness with a slight impact on model performance, while also improving distributive fairness.
- Abstract(参考訳): 機械学習(ML)における公正さは注目されている。
しかし、既存の研究は主にMLモデルの分配的公正性に焦点を当てている。
その他の公平性、すなわち手続き的公正性は無視されている。
本稿では、まずMLモデルの手続き的公正性を定義し、その後、個人的およびグループ的手続き的公正性の形式的定義を与える。
本稿では,MLモデルの群手続き的公正性を評価するための新しい指標,GPF_{FAE$を提案する。
合成データセットと実世界の8つのデータセットに対する$GPF_{FAE}$の有効性を検証する。
本実験は,MLモデルの手続き的公正性と分配的公正性の関係を明らかにするものである。
そこで本研究では,モデルの手続き的不公平につながる特徴を識別する手法を提案し,不公平な特徴を特定して手続き的公正性を改善する2つの方法を提案する。
実験の結果,MLモデルにおける手続き的不公平性の原因となる特徴を正確に識別できることが示され,提案手法のどちらも,モデル性能にわずかに影響を及ぼすことなく,手続き的公正性を大幅に向上させることができるとともに,分配的公正性も向上できることがわかった。
関連論文リスト
- Multi-Output Distributional Fairness via Post-Processing [47.94071156898198]
本稿では,タスクに依存しない公平度尺度である分散パリティを高めるために,マルチ出力モデルに対する後処理手法を提案する。
提案手法では, モデル出力を実験的なワッサーシュタインバリセンタへ移動させるため, 最適トランスポートマッピングを用いる。
論文 参考訳(メタデータ) (2024-08-31T22:41:26Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - Fairness Reprogramming [42.65700878967251]
モデル再プログラミング手法を取り入れたFairRe Programと呼ばれる新しい汎用フェアネス学習パラダイムを提案する。
具体的には、FairRe Programはモデルを変更することができず、フェアネストリガと呼ばれる一連の摂動を入力に追加するケースについて検討している。
我々は,固定MLモデルの出力予測において,公平性トリガが効果的に人口統計バイアスを曖昧にすることができることを理論的および実証的に示す。
論文 参考訳(メタデータ) (2022-09-21T09:37:00Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Reducing Unintended Bias of ML Models on Tabular and Textual Data [5.503546193689538]
我々は、より公平なモデルを構築するために、"無意識によるフェアネス"アプローチにインスパイアされたフレームワークであるFixOutを再考する。
FixOutのパラメータの選択を自動化するなど、いくつかの改善点を紹介します。
我々は、FixOutが異なる分類設定におけるプロセスの公平性を改善することを示す実験結果をいくつか提示する。
論文 参考訳(メタデータ) (2021-08-05T14:55:56Z) - Making ML models fairer through explanations: the case of LimeOut [7.952582509792971]
アルゴリズムによる決定は今では日常的に使われており、複雑でバイアスのかかる機械学習(ML)プロセスに基づいている。
これは、偏見のある決定が個人や社会全体に与える影響を考えると、いくつかの懸念を提起する。
モデルフェアネスを改善するために,「フィーチャードロップアウト」というシンプルなアイデアと「アンサンブルアプローチ」を併用する方法について述べる。
論文 参考訳(メタデータ) (2020-11-01T19:07:11Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - SenSeI: Sensitive Set Invariance for Enforcing Individual Fairness [50.916483212900275]
まず、ある感度集合の不変性を強制する個別の公正性のバージョンを定式化する。
次に,輸送型正規化器を設計し,個別の公平性を強制し,効率よく正規化器を最小化するためのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-06-25T04:31:57Z) - Fair Bayesian Optimization [25.80374249896801]
機械学習(ML)モデルの性能を最適化するために、一般的な制約付きベイズ最適化フレームワークを導入する。
我々は、ランダムな森林、ブースティング、ニューラルネットワークなど、さまざまな人気モデルに公平性制約のあるBOを適用した。
提案手法は,モデル固有の公正性制約を強制する特殊な手法と競合することを示す。
論文 参考訳(メタデータ) (2020-06-09T08:31:08Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。