論文の概要: Towards Enhanced Analysis of Lung Cancer Lesions in EBUS-TBNA -- A Semi-Supervised Video Object Detection Method
- arxiv url: http://arxiv.org/abs/2404.01929v2
- Date: Wed, 10 Apr 2024 03:36:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 16:38:14.442717
- Title: Towards Enhanced Analysis of Lung Cancer Lesions in EBUS-TBNA -- A Semi-Supervised Video Object Detection Method
- Title(参考訳): EBUS-TBNAにおける肺がん病変解析の高度化に向けて -- 半監督ビデオオブジェクト検出法-
- Authors: Jyun-An Lin, Yun-Chien Cheng, Ching-Kai Lin,
- Abstract要約: 本研究は気管支内視鏡内視鏡(EBUS)を用いた肺病変診断システムの構築を目的とする。
EBUS-TBNA (EBUS-transbronchial needle aspiration) 術中、医師は病変の位置をグレースケールの超音波画像に頼っている。
これまでの研究では、EBUS-TBNAへのオブジェクト検出モデルの適用が欠けており、EBUS-TBNAデータセットに注釈をつけるための明確な解決策は存在していない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study aims to establish a computer-aided diagnostic system for lung lesions using bronchoscope endobronchial ultrasound (EBUS) to assist physicians in identifying lesion areas. During EBUS-transbronchial needle aspiration (EBUS-TBNA) procedures, physicians rely on grayscale ultrasound images to determine the location of lesions. However, these images often contain significant noise and can be influenced by surrounding tissues or blood vessels, making interpretation challenging. Previous research has lacked the application of object detection models to EBUS-TBNA, and there has been no well-defined solution for annotating the EBUS-TBNA dataset. In related studies on ultrasound images, although models have been successful in capturing target regions for their respective tasks, their training and predictions have been based on two-dimensional images, limiting their ability to leverage temporal features for improved predictions. This study introduces a three-dimensional image-based object detection model. It utilizes an attention mechanism to capture temporal correlations and we will implements a filtering mechanism to select relevant information from previous frames. Subsequently, a teacher-student model training approach is employed to optimize the model further, leveraging unlabeled data. To mitigate the impact of poor-quality pseudo-labels on the student model, we will add a special Gaussian Mixture Model (GMM) to ensure the quality of pseudo-labels.
- Abstract(参考訳): 本研究の目的は,気管支内視鏡検査(EBUS)による肺病変の診断システムを構築し,病変部位の同定を支援することである。
EBUS-TBNA (EBUS-transbronchial needle aspiration) 術中、医師は病変の位置をグレースケールの超音波画像に頼っている。
しかし、これらの画像は大きなノイズを伴い、周囲の組織や血管の影響を受けやすいため、解釈は困難である。
これまでの研究では、EBUS-TBNAへのオブジェクト検出モデルの適用が欠けており、EBUS-TBNAデータセットに注釈をつけるための明確な解決策は存在していない。
超音波画像の関連研究では、各タスクのターゲット領域の取得に成功しているが、トレーニングと予測は2次元画像に基づいており、時間的特徴を活用して予測を改善する能力が制限されている。
本研究では3次元画像に基づく物体検出モデルを提案する。
時間的相関を捕捉するアテンション機構を利用して,従来のフレームから関連情報を選択するフィルタ機構を実装する。
その後、教師-学生モデルトレーニングアプローチを用いて、未ラベルデータを活用することにより、モデルをさらに最適化する。
学生モデルに対する質の悪い擬似ラベルの影響を軽減するため、擬似ラベルの品質を確保するため、特殊なガウス混合モデル(GMM)を追加する。
関連論文リスト
- Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - The interpretation of endobronchial ultrasound image using 3D
convolutional neural network for differentiating malignant and benign
mediastinal lesions [3.0969191504482247]
本研究の目的は,内胚葉超音波(EBUS)画像を用いて悪性病変と良性病変を鑑別することである。
我々のモデルはノイズに耐性があり、EBUSビデオの様々な画像特徴と願望を融合させることができる。
論文 参考訳(メタデータ) (2021-07-29T08:38:17Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Training custom modality-specific U-Net models with weak localizations
for improved Tuberculosis segmentation and localization [0.6999740786886535]
UNetセグメンテーションモデルは従来の手工芸品よりも優れた性能を示している。
結核の鑑別診断のためのカスタム胸部x線モダリティ特定unetモデルの訓練を行った。
論文 参考訳(メタデータ) (2021-02-21T14:03:49Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。