論文の概要: Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs
- arxiv url: http://arxiv.org/abs/2312.04215v2
- Date: Thu, 23 Jan 2025 08:01:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:31.045275
- Title: Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs
- Title(参考訳): 脳MRIにおける教師なし異常検出のための条件付き拡散モデルによるガイド付き再構成
- Authors: Finn Behrendt, Debayan Bhattacharya, Robin Mieling, Lennart Maack, Julia Krüger, Roland Opfer, Alexander Schlaefer,
- Abstract要約: Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
- 参考スコア(独自算出の注目度): 35.46541584018842
- License:
- Abstract: The application of supervised models to clinical screening tasks is challenging due to the need for annotated data for each considered pathology. Unsupervised Anomaly Detection (UAD) is an alternative approach that aims to identify any anomaly as an outlier from a healthy training distribution. A prevalent strategy for UAD in brain MRI involves using generative models to learn the reconstruction of healthy brain anatomy for a given input image. As these models should fail to reconstruct unhealthy structures, the reconstruction errors indicate anomalies. However, a significant challenge is to balance the accurate reconstruction of healthy anatomy and the undesired replication of abnormal structures. While diffusion models have shown promising results with detailed and accurate reconstructions, they face challenges in preserving intensity characteristics, resulting in false positives. We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image. We demonstrate that this conditioning allows for accurate and local adaptation to the general input intensity distribution while avoiding the replication of unhealthy structures. We compare the novel approach to different state-of-the-art methods and for different data sets. Our results show substantial improvements in the segmentation performance, with the Dice score improved by 11.9%, 20.0%, and 44.6%, for the BraTS, ATLAS and MSLUB data sets, respectively, while maintaining competitive performance on the WMH data set. Furthermore, our results indicate effective domain adaptation across different MRI acquisitions and simulated contrasts, an important attribute for general anomaly detection methods. The code for our work is available at https://github.com/FinnBehrendt/Conditioned-Diffusion-Models-UAD
- Abstract(参考訳): 臨床検診業務への教師付きモデルの適用は,各病理に注釈付きデータが必要であるため困難である。
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的とした代替手法である。
脳MRIにおけるUDAの一般的な戦略は、生成モデルを使用して、与えられた入力画像に対する健康的な脳解剖学の再構築を学ぶことである。
これらのモデルでは不健康な構造を再構築できないため、再構成エラーは異常を示す。
しかし、重要な課題は、健康な解剖学の正確な再構築と、望ましくない異常な構造の複製のバランスをとることである。
拡散モデルでは、詳細な高精度な再構成による有望な結果が示されているが、強度特性の保存は困難であり、結果として偽陽性となる。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
この条件付けにより、不健康な構造の複製を回避しつつ、一般的な入力強度分布に正確かつ局所的に適応できることを示す。
我々は、新しいアプローチを異なる最先端の手法と異なるデータセットと比較する。
以上の結果から,WMHデータセット上での競合性能を維持しつつ,BraTS,ATLAS,MSLUBの各データセットに対して,Diceスコアを11.9%,20.0%,44.6%向上させ,セグメンテーション性能を著しく向上させた。
さらに, 一般的な異常検出法の重要な属性である, 異なるMRI取得とシミュレーションコントラストにまたがる効果的な領域適応が示唆された。
私たちの作業のコードはhttps://github.com/FinnBehrendt/Conditioned-Diffusion-Models-UADで公開されています。
関連論文リスト
- Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram [5.387300498478745]
マンモグラムスクリーニングに使用されるAIモデルの一般化を促進するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
我々は,大規模デジタル検診マンモグラムからOODを検出する新しいバックボーン,HANDを開発した。
Hand Pipelineは、外部スクリーニングマンモグラムにおけるドメイン固有の品質チェックのための、自動化された効率的な計算ソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T20:12:50Z) - Leveraging the Mahalanobis Distance to enhance Unsupervised Brain MRI Anomaly Detection [35.46541584018842]
教師なし異常検出(UAD)法は、異常を外れ値として識別するために健全なデータ分布に依存する。
脳MRIでは、再生モデルが正常な脳MRIを再構成し、異常が入力と再構成のずれとして検出される。
我々は確率的拡散モデルを用いて複数の再構成を構築し、マハラノビス距離を用いてこれらの再構成結果の分布を分析し、異常を外れ値として同定する。
論文 参考訳(メタデータ) (2024-07-17T11:02:31Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
本稿では,教師なし特徴抽出器として生成拡散オートエンコーダモデルを訓練するための新しい手法を提案する。
フラクチャーグレーディングを連続回帰としてモデル化し, フラクチャーのスムーズな進行を反映した。
重要なことに,本手法の創成特性は,与えられた脊椎の様々な段階を可視化し,自動グルーピングに寄与する特徴を解釈し,洞察することを可能にする。
論文 参考訳(メタデータ) (2023-03-21T17:16:01Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。