論文の概要: PREGO: online mistake detection in PRocedural EGOcentric videos
- arxiv url: http://arxiv.org/abs/2404.01933v2
- Date: Fri, 17 May 2024 16:03:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 18:12:19.440075
- Title: PREGO: online mistake detection in PRocedural EGOcentric videos
- Title(参考訳): PreGO:PRocedural EGOセントリックビデオにおけるオンラインエラー検出
- Authors: Alessandro Flaborea, Guido Maria D'Amely di Melendugno, Leonardo Plini, Luca Scofano, Edoardo De Matteis, Antonino Furnari, Giovanni Maria Farinella, Fabio Galasso,
- Abstract要約: 自己中心型ビデオにおける誤り検出のための,最初のオンライン一級分類モデルであるPregoを提案する。
PreGOは、現在のアクションをモデル化するオンラインアクション認識コンポーネントと、次のアクションを予測するシンボリック推論モジュールに基づいている。
手続き的誤り検出のオンラインベンチマークに適応する2つの手続き的自己中心型ビデオデータセットであるAmbly101とEpic-tentについてPreGOを評価した。
- 参考スコア(独自算出の注目度): 49.72812518471056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Promptly identifying procedural errors from egocentric videos in an online setting is highly challenging and valuable for detecting mistakes as soon as they happen. This capability has a wide range of applications across various fields, such as manufacturing and healthcare. The nature of procedural mistakes is open-set since novel types of failures might occur, which calls for one-class classifiers trained on correctly executed procedures. However, no technique can currently detect open-set procedural mistakes online. We propose PREGO, the first online one-class classification model for mistake detection in PRocedural EGOcentric videos. PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions. Mistake detection is performed by comparing the recognized current action with the expected future one. We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection to establish suitable benchmarks, thus defining the Assembly101-O and Epic-tent-O datasets, respectively.
- Abstract(参考訳): オンライン設定で、エゴセントリックなビデオから手続き的エラーを素早く特定することは、間違いをすぐに検出する上で非常に困難で価値のあることです。
この能力は、製造業や医療など、さまざまな分野に適用できる。
手続き的ミスの性質は、新しいタイプの失敗が起こる可能性があり、正しく実行される手順で訓練された一級分類器を要求するため、オープンセットである。
しかし、現在、オープンセットの手続き上の誤りをオンラインで検出する技術はない。
PRocedural EGO 中心ビデオにおける誤り検出のためのオンライン一級分類モデル PreGO を提案する。
PreGOは、現在のアクションをモデル化するオンラインアクション認識コンポーネントと、次のアクションを予測するシンボリック推論モジュールに基づいている。
認識された現在の動作と期待される将来の動作とを比較して誤検出を行う。
我々は、手続き的誤り検出のオンラインベンチマークに適応し、適切なベンチマークを確立するための2つの手続き的自己中心型ビデオデータセットであるAmbly101とEpic-tentについてPreGOを評価し、それぞれAmbly101-OとEpic-tent-Oを定義した。
関連論文リスト
- TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos [48.126793563151715]
オンラインのオープンセットの手続きミスを効果的に検出する技術はない。
1つのブランチは、入力されたエゴセントリックビデオからステップ認識を連続的に行う。
もう1つは、認識モジュールの出力に基づいて将来のステップを予測します。
論文 参考訳(メタデータ) (2024-11-04T20:03:06Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - IndustReal: A Dataset for Procedure Step Recognition Handling Execution
Errors in Egocentric Videos in an Industrial-Like Setting [7.561148568365396]
手順ステップ認識(PSR)の新たな課題について紹介する。
PSRは、手続き段階の正しい完了と順序を認識することに焦点を当てている。
マルチモーダルなIndustRealデータセットも提示する。
論文 参考訳(メタデータ) (2023-10-26T11:44:29Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
人々をローカライズし、ビデオからアクションを認識することは、ハイレベルなビデオ理解にとって難しい課題だ。
既存の手法は主に2段階ベースで、1段階は人物境界ボックス生成、もう1段階は行動認識を行う。
本稿では、時間的行動検出の効率を向上させるために、DOADと呼ばれる分離したワンステージネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-01T08:06:43Z) - HCL-TAT: A Hybrid Contrastive Learning Method for Few-shot Event
Detection with Task-Adaptive Threshold [18.165302114575212]
タスク適応型閾値(HCLTAT)を用いた新しいハイブリッドコントラスト学習法を提案する。
本稿では,タスク適応型閾値(HCLTAT)を用いたハイブリッドコントラスト学習手法を提案する。
ベンチマークデータセットFewEventの実験は、最先端技術と比較して、より良い結果を得るために、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-10-17T07:37:38Z) - Online Dictionary Learning Based Fault and Cyber Attack Detection for
Power Systems [4.657875410615595]
本稿では,ストリームデータマイニング分類器を活用することで,イベント検出と侵入検出の問題に対処する。
まず、ラベルのないデータから高レベルな特徴を学習して辞書を構築する。
そして、ラベル付きデータは、学習した辞書原子の疎線形結合として表現される。
我々は、これらの余分なコードを利用して、オンライン分類器と効率的な変更検出器を訓練する。
論文 参考訳(メタデータ) (2021-08-24T23:17:58Z) - The Instantaneous Accuracy: a Novel Metric for the Problem of Online
Human Behaviour Recognition in Untrimmed Videos [9.3576825415122]
我々は,新しいオンライン指標Instantaneous Accuracy(IA$)を紹介した。
本研究は,従来の評価プロトコルの問題点を検証し,人の行動理解のオンラインシナリオにIAベースのプロトコルの方が適切であることを示唆する。
論文 参考訳(メタデータ) (2020-03-22T19:04:05Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。