論文の概要: Synthetic Data for Robust Stroke Segmentation
- arxiv url: http://arxiv.org/abs/2404.01946v1
- Date: Tue, 2 Apr 2024 13:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:19:00.875252
- Title: Synthetic Data for Robust Stroke Segmentation
- Title(参考訳): ロバストストロークセグメンテーションのための合成データ
- Authors: Liam Chalcroft, Ioannis Pappas, Cathy J. Price, John Ashburner,
- Abstract要約: ディープラーニングに基づくニューロイメージングにおけるセマンティックセグメンテーションは、現在、高解像度スキャンと広範な注釈付きデータセットを必要とする。
そこで我々は,既存のSynthSegアプローチの能力を拡張した,病変分割作業のための新しい合成フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based semantic segmentation in neuroimaging currently requires high-resolution scans and extensive annotated datasets, posing significant barriers to clinical applicability. We present a novel synthetic framework for the task of lesion segmentation, extending the capabilities of the established SynthSeg approach to accommodate large heterogeneous pathologies with lesion-specific augmentation strategies. Our method trains deep learning models, demonstrated here with the UNet architecture, using label maps derived from healthy and stroke datasets, facilitating the segmentation of both healthy tissue and pathological lesions without sequence-specific training data. Evaluated against in-domain and out-of-domain (OOD) datasets, our framework demonstrates robust performance, rivaling current methods within the training domain and significantly outperforming them on OOD data. This contribution holds promise for advancing medical imaging analysis in clinical settings, especially for stroke pathology, by enabling reliable segmentation across varied imaging sequences with reduced dependency on large annotated corpora. Code and weights available at https://github.com/liamchalcroft/SynthStroke.
- Abstract(参考訳): ニューロイメージングにおける深層学習に基づくセマンティックセグメンテーションは、高解像度スキャンと広範囲の注釈付きデータセットを必要としており、臨床応用に重大な障壁がある。
本研究は, 病変分割作業のための新しい総合的枠組みであるSynthSegアプローチを拡張して, 病変特異的増強戦略を取り入れた大規模異種疾患の適応を図ったものである。
本手法は,健常および脳卒中データセットから得られたラベルマップを用いて,UNetアーキテクチャを用いて深層学習モデルのトレーニングを行う。
我々のフレームワークは、ドメイン内およびドメイン外(OOD)データセットに対して評価され、堅牢なパフォーマンスを示し、トレーニングドメイン内の現在のメソッドと競合し、OODデータでそれらを著しく上回る。
この貢献は、臨床、特に脳卒中病理における医療画像解析の進歩を約束するものであり、大きな注釈付きコーパスへの依存度を減らして、様々な画像シーケンスにわたる信頼性の高いセグメンテーションを可能にする。
コードとウェイトはhttps://github.com/liamchalcroft/SynthStroke.comで入手できる。
関連論文リスト
- Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy [1.4353812560047192]
Sim-to-real ドメイン適応アプローチは、コスト効率の良いソリューションを提供するシミュレーションから合成データを利用する。
対象領域のアノテーションを使わずに、SAMを蛍光X線ガイドワイヤセグメント化に適応させる戦略を提案する。
提案手法は、事前訓練されたSAMと、最先端のドメイン適応技術の両方を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-10-09T21:59:48Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
公開されているFIVESファウンダスイメージデータセット上で,5つの公開モデルをトレーニングし,評価する。
画像の品質がセグメンテーションの結果を決定する重要な要因であることがわかった。
論文 参考訳(メタデータ) (2024-06-21T09:12:34Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
本研究は,MedMNIST+データベースに対する評価環境の多様化のためのベンチマークを示す。
我々は、医用画像分類のための共通畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースのアーキテクチャを徹底的に分析する。
この結果から,計算効率のよいトレーニングスキームと最新の基礎モデルは,高額なエンドツーエンドトレーニングとリソース強化アプローチのギャップを埋める上で有望であることが示唆された。
論文 参考訳(メタデータ) (2024-04-24T10:19:25Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。