Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study
- URL: http://arxiv.org/abs/2201.01099v1
- Date: Tue, 4 Jan 2022 11:56:11 GMT
- Title: Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study
- Authors: Sedar Olmez, Dan Birks, Alison Heppenstall
- Abstract summary: This paper explores how Reinforcement Learning can be applied to create emergent agent behaviours.
Running a series of simulations, we demonstrate that agents trained using the novel Proximal Policy optimisation algorithm behave in ways that exhibit properties of real-world intelligent adaptive behaviours.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing and simulating intelligent adaptive behaviours within spatially
explicit individual-based models remains an ongoing challenge for researchers.
While an ever-increasing abundance of real-world behavioural data are
collected, few approaches exist that can quantify and formalise key individual
behaviours and how they change over space and time. Consequently, commonly used
agent decision-making frameworks, such as event-condition-action rules, are
often required to focus only on a narrow range of behaviours. We argue that
these behavioural frameworks often do not reflect real-world scenarios and fail
to capture how behaviours can develop in response to stimuli. There has been an
increased interest in Machine Learning methods and their potential to simulate
intelligent adaptive behaviours in recent years. One method that is beginning
to gain traction in this area is Reinforcement Learning (RL). This paper
explores how RL can be applied to create emergent agent behaviours using a
simple predator-prey Agent-Based Model (ABM). Running a series of simulations,
we demonstrate that agents trained using the novel Proximal Policy Optimisation
(PPO) algorithm behave in ways that exhibit properties of real-world
intelligent adaptive behaviours, such as hiding, evading and foraging.
Related papers
- Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.
Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.
These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Emergent Behaviors in Multi-Agent Target Acquisition [0.0]
We simulate a Multi-Agent System (MAS) using Reinforcement Learning (RL) in a pursuit-evasion game.
We create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies.
The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities.
arXiv Detail & Related papers (2022-12-15T15:20:58Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Simulating and classifying behavior in adversarial environments based on
action-state traces: an application to money laundering [18.625578105241]
We present a novel way of approaching these types of applications, in particular in the context of Anti-Money Laundering.
We provide a mechanism through which diverse, realistic and new unobserved behavior may be generated to discover potential unobserved adversarial actions.
arXiv Detail & Related papers (2020-11-03T16:30:53Z) - Efficient Model-Based Reinforcement Learning through Optimistic Policy
Search and Planning [93.1435980666675]
We show how optimistic exploration can be easily combined with state-of-the-art reinforcement learning algorithms.
Our experiments demonstrate that optimistic exploration significantly speeds-up learning when there are penalties on actions.
arXiv Detail & Related papers (2020-06-15T18:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.