Causality-based Transfer of Driving Scenarios to Unseen Intersections
- URL: http://arxiv.org/abs/2404.02046v1
- Date: Tue, 2 Apr 2024 15:38:18 GMT
- Title: Causality-based Transfer of Driving Scenarios to Unseen Intersections
- Authors: Christoph Glasmacher, Michael Schuldes, Sleiman El Masri, Lutz Eckstein,
- Abstract summary: In scenario-based testing automated functions are evaluated in a set of pre-defined scenarios.
To create realistic scenarios, parameters and parameter dependencies have to be fitted utilizing real-world data.
This paper proposes a methodology to systematically analyze relations between parameters of scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scenario-based testing of automated driving functions has become a promising method to reduce time and cost compared to real-world testing. In scenario-based testing automated functions are evaluated in a set of pre-defined scenarios. These scenarios provide information about vehicle behaviors, environmental conditions, or road characteristics using parameters. To create realistic scenarios, parameters and parameter dependencies have to be fitted utilizing real-world data. However, due to the large variety of intersections and movement constellations found in reality, data may not be available for certain scenarios. This paper proposes a methodology to systematically analyze relations between parameters of scenarios. Bayesian networks are utilized to analyze causal dependencies in order to decrease the amount of required data and to transfer causal patterns creating unseen scenarios. Thereby, infrastructural influences on movement patterns are investigated to generate realistic scenarios on unobserved intersections. For evaluation, scenarios and underlying parameters are extracted from the inD dataset. Movement patterns are estimated, transferred and checked against recorded data from those initially unseen intersections.
Related papers
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
This paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations.
The dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters.
We establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings.
arXiv Detail & Related papers (2024-06-26T14:00:21Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Graph Convolutional Networks for Complex Traffic Scenario Classification [0.7919810878571297]
A scenario-based testing approach can reduce the time required to obtain statistically significant evidence of the safety of Automated Driving Systems.
Most methods on scenario classification do not work for complex scenarios with diverse environments.
We propose a method for complex traffic scenario classification that is able to model the interaction of a vehicle with the environment.
arXiv Detail & Related papers (2023-10-26T20:51:24Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles [0.0]
In scenario-based testing, relevant (driving) scenarios are the basis of tests.
We address the open challenges of classifying sets of scenarios and measuring coverage of theses scenarios in recorded test drives.
arXiv Detail & Related papers (2023-07-11T08:30:57Z) - Vectorized Scenario Description and Motion Prediction for Scenario-Based
Testing [2.07180164747172]
This paper proposes a vectorized scenario description defined by the road geometry and vehicles' trajectories.
Data of this form are generated for three scenarios, merged, and used to train the motion prediction model VectorNet.
arXiv Detail & Related papers (2023-02-02T15:32:25Z) - An Application of Scenario Exploration to Find New Scenarios for the
Development and Testing of Automated Driving Systems in Urban Scenarios [2.480533141352916]
This work aims to find relevant, interesting, or critical parameter sets within logical scenarios by utilizing Bayes optimization and Gaussian processes.
A list of ideas this work leads to and should be investigated further is presented.
arXiv Detail & Related papers (2022-05-17T09:47:32Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.