An Application of Scenario Exploration to Find New Scenarios for the
Development and Testing of Automated Driving Systems in Urban Scenarios
- URL: http://arxiv.org/abs/2205.08202v1
- Date: Tue, 17 May 2022 09:47:32 GMT
- Title: An Application of Scenario Exploration to Find New Scenarios for the
Development and Testing of Automated Driving Systems in Urban Scenarios
- Authors: Barbara Sch\"utt, Marc Heinrich, Sonja Marahrens, J. Marius Z\"ollner,
Eric Sax
- Abstract summary: This work aims to find relevant, interesting, or critical parameter sets within logical scenarios by utilizing Bayes optimization and Gaussian processes.
A list of ideas this work leads to and should be investigated further is presented.
- Score: 2.480533141352916
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Verification and validation are major challenges for developing automated
driving systems. A concept that gets more and more recognized for testing in
automated driving is scenario-based testing. However, it introduces the problem
of what scenarios are relevant for testing and which are not. This work aims to
find relevant, interesting, or critical parameter sets within logical scenarios
by utilizing Bayes optimization and Gaussian processes. The parameter
optimization is done by comparing and evaluating six different metrics in two
urban intersection scenarios. Finally, a list of ideas this work leads to and
should be investigated further is presented.
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Causality-based Transfer of Driving Scenarios to Unseen Intersections [0.0]
In scenario-based testing automated functions are evaluated in a set of pre-defined scenarios.
To create realistic scenarios, parameters and parameter dependencies have to be fitted utilizing real-world data.
This paper proposes a methodology to systematically analyze relations between parameters of scenarios.
arXiv Detail & Related papers (2024-04-02T15:38:18Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles [0.0]
In scenario-based testing, relevant (driving) scenarios are the basis of tests.
We address the open challenges of classifying sets of scenarios and measuring coverage of theses scenarios in recorded test drives.
arXiv Detail & Related papers (2023-07-11T08:30:57Z) - Clustering-based Criticality Analysis for Testing of Automated Driving
Systems [0.18416014644193066]
This paper focuses on the the goal to reduce the scenario set by clustering concrete scenarios from a single logical scenario.
By employing clustering techniques, redundant and uninteresting scenarios can be identified and eliminated, resulting in a representative scenario set.
arXiv Detail & Related papers (2023-06-22T08:36:20Z) - Realistic Safety-critical Scenarios Search for Autonomous Driving System
via Behavior Tree [8.286351881735191]
We propose the Matrix-Fuzzer, a behavior tree-based testing framework, to automatically generate realistic safety-critical test scenarios.
Our approach is able to find the most types of safety-critical scenarios, but only generating around 30% of the total scenarios compared with the baseline algorithm.
arXiv Detail & Related papers (2023-05-11T06:53:03Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - A Survey on Scenario-Based Testing for Automated Driving Systems in
High-Fidelity Simulation [26.10081199009559]
Testing the system on the road is the closest to real-world and desirable approach, but it is incredibly costly.
A popular alternative is to evaluate an ADS's performance in some well-designed challenging scenarios, a.k.a. scenario-based testing.
High-fidelity simulators have been widely used in this setting to maximize flexibility and convenience in testing what-if scenarios.
arXiv Detail & Related papers (2021-12-02T03:41:33Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
We present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning.
A core component of our work is to introduce textitagency, such that it is simple to define and create complex scenarios.
We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment.
arXiv Detail & Related papers (2021-06-25T00:21:41Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.