論文の概要: Digital Forgetting in Large Language Models: A Survey of Unlearning Methods
- arxiv url: http://arxiv.org/abs/2404.02062v1
- Date: Tue, 2 Apr 2024 16:01:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:49:31.907216
- Title: Digital Forgetting in Large Language Models: A Survey of Unlearning Methods
- Title(参考訳): 大規模言語モデルにおけるデジタルフォーミング:未学習の手法に関する調査
- Authors: Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares, David Sánchez, Josep Domingo-Ferrer, Guillem Collell, Kuan Eeik Tan,
- Abstract要約: この調査は、大きな言語モデル(LLM)の忘れ方に焦点を当てている。
まず、LLMのコンポーネント、LLMのタイプ、通常のトレーニングパイプラインなど、LLMのバックグラウンドを提供します。
次に,デジタル忘れることの動機,タイプ,望ましい特性について述べる。
第3に,LLMにおけるデジタル忘れへのアプローチを紹介する。
- 参考スコア(独自算出の注目度): 3.6070136675401656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of digital forgetting is, given a model with undesirable knowledge or behavior, obtain a new model where the detected issues are no longer present. The motivations for forgetting include privacy protection, copyright protection, elimination of biases and discrimination, and prevention of harmful content generation. Effective digital forgetting has to be effective (meaning how well the new model has forgotten the undesired knowledge/behavior), retain the performance of the original model on the desirable tasks, and be scalable (in particular forgetting has to be more efficient than retraining from scratch on just the tasks/data to be retained). This survey focuses on forgetting in large language models (LLMs). We first provide background on LLMs, including their components, the types of LLMs, and their usual training pipeline. Second, we describe the motivations, types, and desired properties of digital forgetting. Third, we introduce the approaches to digital forgetting in LLMs, among which unlearning methodologies stand out as the state of the art. Fourth, we provide a detailed taxonomy of machine unlearning methods for LLMs, and we survey and compare current approaches. Fifth, we detail datasets, models and metrics used for the evaluation of forgetting, retaining and runtime. Sixth, we discuss challenges in the area. Finally, we provide some concluding remarks.
- Abstract(参考訳): デジタル忘れることの目的は、望ましくない知識や行動を持つモデルが与えられた場合、検出された問題がもはや存在しない新しいモデルを得ることである。
忘れる動機は、プライバシー保護、著作権保護、偏見と差別の排除、有害なコンテンツ生成の防止である。
効果的なデジタル忘れは効果的でなければならない(新しいモデルは、望ましくない知識/振る舞いをいかに忘れたか)、元のモデルのパフォーマンスを望ましいタスクで維持し、スケーラブルでなければなりません(特に忘れることの方が、タスク/データだけをスクラッチからトレーニングするよりも効率的です)。
この調査は、大きな言語モデル(LLM)の忘れ方に焦点を当てている。
まず、LLMのコンポーネント、LLMのタイプ、通常のトレーニングパイプラインなど、LLMのバックグラウンドを提供します。
次に,デジタル忘れることの動機,タイプ,望ましい特性について述べる。
第3に,LLMにおけるデジタル忘れへのアプローチを紹介する。
第4に、LLMのための機械学習手法の詳細な分類法を提供し、現在のアプローチを調査し比較する。
第5に、忘れ、保持、実行の評価に使用されるデータセット、モデル、メトリクスについて詳述します。
第6回では,この領域の課題について論じる。
最後に、いくつかの結論を述べる。
関連論文リスト
- CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
コードブック機能とスパースオートエンコーダ(SAEs)を用いた新しいアンラーニング手法を提案する。
ボトルネックを利用して、アクティベーション空間を分解し、情報の流れを規制することにより、モデルの性能を無関係なデータに保ちながら、ターゲットとなる情報を効率的に解き放つ。
論文 参考訳(メタデータ) (2024-10-08T10:26:22Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
言語モデル(LM)は、プライベートおよび著作権のあるコンテンツを含む大量のテキストデータに基づいて訓練される。
総合的な機械学習評価ベンチマークであるMUSEを提案する。
人気のある8つのアンラーニングアルゴリズムがハリー・ポッターの本やニュース記事をいかに効果的に解き放つかをベンチマークする。
論文 参考訳(メタデータ) (2024-07-08T23:47:29Z) - RKLD: Reverse KL-Divergence-based Knowledge Distillation for Unlearning Personal Information in Large Language Models [23.91608718129775]
我々は,大規模言語モデル(LLM)のための新しいtextbfReverse textbfKL-Divergence-based Knowledge textbfDistillation unlearningアルゴリズムであるRKLDを提案する。
我々は,実験におけるモデルの有用性を効果的に維持し,品質を著しく忘れることを実現した。
論文 参考訳(メタデータ) (2024-06-04T05:51:43Z) - Offset Unlearning for Large Language Models [49.851093293780615]
アンラーニングは、問題のあるトレーニングデータに影響された大規模言語モデルの潜在的な治療法として浮上した。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$delta$-unlearningを提案する。
実験によると、$delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
論文 参考訳(メタデータ) (2024-04-17T03:39:51Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Second-Order Information Matters: Revisiting Machine Unlearning for Large Language Models [1.443696537295348]
プライバシーの漏洩と著作権侵害はまだ未発見だ。
我々の未学習のアルゴリズムは、データに依存しない/モデルに依存しないだけでなく、ユーティリティの保存やプライバシー保証の観点からも堅牢であることが証明されている。
論文 参考訳(メタデータ) (2024-03-13T18:57:30Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Reducing Overlearning through Disentangled Representations by
Suppressing Unknown Tasks [8.517620051440005]
視覚的特徴を学習するための既存のディープラーニングアプローチは、手元にあるタスクに必要なものよりも、過剰に学習し、より多くの情報を抽出する傾向がある。
プライバシー保護の観点からは、入力された視覚情報はモデルから保護されない。
未知のタスクを全て抑制することで、モデルオーバーラーニングを減らすためのモデル非依存のソリューションを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。