Quantum bistability at the interplay between collective and individual decay
- URL: http://arxiv.org/abs/2404.02134v1
- Date: Tue, 2 Apr 2024 17:44:45 GMT
- Title: Quantum bistability at the interplay between collective and individual decay
- Authors: Nikita Leppenen, Ephraim Shahmoon,
- Abstract summary: We study driven collective radiation of an ensemble of atoms placed inside a cavity.
One of these states is entangled and closely resembles a coherently radiating spin state.
Remarkably, this suggests that the system may reside in an entangled CRSS-like state even in the presence of decorrelating individual decay.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study driven collective radiation of an ensemble of atoms placed inside a cavity, accounting for individual-atom emission to free space modes. We find that the steady state exhibits a dissipative phase transition, formed by a mixture of two collective quantum states corresponding to a bistable mean-field solution. One of these states is entangled and closely resembles a coherently radiating spin state (CRSS) -- the solution obtained by neglecting individual decay (Dicke superradiance) -- allowing us to analytically find the optimally achievable spin squeezing. We predict quantum switching between the two states, verified by quantum trajectories simulations. The switching rate tends to vanish with the atom number, as the Liouvillan gap closes. Remarkably, this suggests that the system may reside in an entangled CRSS-like state associated with correlated Dicke physics, even in the presence of decorrelating individual decay. This opens a path for a systematic study of the interplay between collective and individual decay, in both experiments and theory.
Related papers
- Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Steady-state subradiance manipulated by the two-atom decay [0.0]
We show that the two-atom decay can significantly suppress the steady-state collective radiance of the atoms.
This work broadens the realm of collective radiance, with potential applications for quantum information processing.
arXiv Detail & Related papers (2022-12-15T10:23:58Z) - Quantum memory effects in atomic ensembles coupled to photonic cavities [0.0]
We study the dynamics of many-body atomic systems symmetrically coupled to a single Lorentzian photonic cavity.
Our study reveals interesting dynamical characteristics including non-zero steady states, superradiant decay and enhanced energy transfer.
arXiv Detail & Related papers (2022-11-15T23:07:07Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum entanglement between excitons in two-dimensional materials [0.0]
The quantum entanglement between two excitons in two-dimensional materials, embedded in an optical microcavity, was investigated.
The energy eigenstates of a Jaynes-Cummings like Hamiltonian for two qubits coupled to a single cavity mode have been calculated.
arXiv Detail & Related papers (2021-12-06T14:17:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Exploring dynamical phase transitions with cold atoms in an optical
cavity [0.0]
We use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model.
Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters.
arXiv Detail & Related papers (2019-10-01T14:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.